Godot引擎中非2次幂尺寸DDS纹理加载问题解析
2025-04-29 12:54:05作者:宣聪麟
在游戏开发中,DDS(DirectDraw Surface)是一种常见的纹理文件格式,因其支持硬件加速和多种压缩格式而被广泛使用。本文将深入分析Godot引擎在处理非2次幂尺寸(NPOT)且带有mipmap的DDS纹理时遇到的问题及其解决方案。
问题现象
当开发者尝试在Godot引擎中加载具有以下特征的DDS纹理时会出现加载失败:
- 使用RGBA8格式
- 包含mipmap层级
- 纹理尺寸为非2次幂(如120×120或512×384)
错误信息通常表现为预期的图像数据大小与实际大小不匹配,例如:
ERROR: Expected Image data size of 512x384x1 (DXT5 RGBA8 with 9 mipmaps) = 262192 bytes, got 262176 bytes instead.
技术背景
DDS格式由微软开发,支持多种压缩格式(如DXT1/DXT5/BC7等)和特性(如mipmap、立方体贴图等)。传统上,图形API要求纹理尺寸为2次幂,但现代API已放宽此限制。
Mipmap是纹理的缩小版本序列,用于提高渲染质量和性能。计算mipmap尺寸时,通常采用逐步除以2并向下取整的方式。
问题根源分析
Godot引擎中存在两处关键计算错误:
-
非压缩格式的mipmap尺寸计算错误 对于未压缩的RGBA8格式,Godot错误地使用了
(w + 1) >> 1的计算方式,这会导致奇数尺寸处理不正确。正确的做法应使用MAX(1u, w >> 1)。以120×120纹理为例:
- 错误计算会产生8×8、4×4、2×2的mipmap
- 正确计算应产生7×7、3×3、1×1的mipmap
-
压缩格式的块尺寸计算错误 对于DXT等压缩格式,Godot使用了不正确的块尺寸计算公式:
MAX(info.divisor, w) / info.divisor * MAX(info.divisor, h) / info.divisor * info.block_size;而根据微软DDS规范,正确公式应为:
MAX(1, (w + 3) / 4) * MAX(1, (h + 3) / 4) * info.block_size;这种差异在尺寸不被4整除时尤为明显,如8×6纹理:
- 错误计算得到48字节
- 正确计算应得到64字节
解决方案
Godot引擎已通过以下改进修复了这些问题:
- 统一了压缩和非压缩格式的mipmap尺寸计算逻辑,均采用
MAX(1u, w >> 1)方式 - 修正了压缩格式的块尺寸计算公式,遵循微软DDS规范
- 保留了对于非4整除尺寸的警告提示,但允许继续加载
开发者建议
虽然现代图形API支持NPOT纹理,但为了最佳兼容性和性能,建议:
- 尽量使用2次幂尺寸的纹理
- 若必须使用NPOT纹理,确保尺寸至少能被4整除(对于压缩格式)
- 测试纹理在所有目标平台上的表现
- 考虑使用工具预处理纹理,确保符合规范
总结
Godot引擎通过改进DDS加载器的核心算法,现在能够正确处理非2次幂尺寸且带有mipmap的DDS纹理。这一改进增强了引擎的兼容性,使开发者能够更灵活地使用各种来源的纹理资源。理解这些底层机制有助于开发者更好地处理纹理资源,避免潜在问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878