在Bazel中使用Emscripten工具链构建WASM项目
概述
本文介绍如何在Bazel构建系统中正确配置和使用Emscripten工具链来构建WebAssembly(WASM)项目。我们将探讨常见的配置问题及其解决方案,特别是关于工具链提供者(TemplateVariableInfo)缺失的问题。
工具链配置要点
在Bazel中使用Emscripten工具链时,需要注意以下几个关键配置:
-
平台指定:必须通过
--platforms=@emsdk//:platform_wasm参数明确指定目标平台为WASM。这个参数可以放在命令行中,也可以放在项目的.bazelrc配置文件中。 -
工具链选择:当使用
genrule规则时,Bazel期望工具链提供TemplateVariableInfo。对于Emscripten工具链,推荐使用@bazel_tools//tools/cpp:current_cc_toolchain作为工具链引用。 -
全局配置:如果整个项目都针对Emscripten/WASM平台,建议将平台配置放在
.bazelrc文件中,这样可以避免每次构建都需要指定平台参数。
实际应用示例
以构建libffi库为例,正确的Bazel配置应包括:
- 在WORKSPACE文件中定义外部依赖:
http_archive(
name = "libffi_src",
# 省略具体配置...
)
- 在BUILD文件中定义构建规则时,可以省略显式的工具链指定(当已配置全局平台时):
genrule(
name = "libffi",
srcs = ["@libffi_src//:all"],
cmd = "cd external/libffi_src && ./testsuite/emscripten/build.sh --wasm-bigint",
outs = ["libffi.a"]
)
常见问题解决
当遇到"does not have mandatory providers: TemplateVariableInfo"错误时,可以采取以下解决方案:
-
确保已正确设置平台参数:
--platforms=@emsdk//:platform_wasm -
如果必须显式指定工具链,使用:
@bazel_tools//tools/cpp:current_cc_toolchain -
检查工具链的完整性,确保Emscripten SDK已正确安装和配置
最佳实践建议
-
对于纯WASM项目,建议在
.bazelrc中设置默认平台,简化构建命令 -
复杂的构建过程(如autotools/cmake项目)可能需要更细致的工具链配置
-
考虑使用专门的规则(如
wasm_cc_binary)而非通用genrule,以获得更好的工具链集成
通过正确配置平台和工具链,开发者可以在Bazel中充分利用Emscripten工具链构建高效的WASM应用。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00