MLJAR-Supervised中Scale预处理模块的JSON序列化问题分析
2025-06-26 18:34:38作者:尤峻淳Whitney
问题背景
在MLJAR-Supervised项目的测试过程中,发现Scale预处理模块在JSON序列化和反序列化后使用时会产生一个用户警告(UserWarning)。该警告表明当使用经过JSON序列化/反序列化的Scale对象进行数据转换时,会出现特征名称不匹配的情况。
问题现象
测试用例test_to_and_from_json模拟了以下场景:
- 创建一个包含两列数据的DataFrame
- 初始化Scale预处理对象,指定对"col1"列进行标准化
- 对数据进行拟合(fit)
- 将Scale对象序列化为JSON
- 从JSON重新加载为新的Scale对象
- 使用新对象进行数据转换
在最后一步转换时,系统抛出警告:"X has feature names, but StandardScaler was fitted without feature names",表明输入数据包含特征名称,但内部使用的StandardScaler对象在拟合时没有记录这些特征名称。
技术分析
这个问题源于scikit-learn 1.0版本引入的feature_names_in_属性检查机制。StandardScaler在转换时会验证输入数据的特征名称是否与拟合时一致。当Scale对象被序列化为JSON再重新加载时,内部的StandardScaler对象会丢失原始的feature_names_in_属性信息。
解决方案
修复此问题需要确保在Scale对象的JSON序列化和反序列化过程中,正确处理StandardScaler的特征名称信息。具体措施包括:
- 在
to_json方法中,除了保存缩放参数外,还需要保存feature_names_in_属性 - 在
from_json方法中,恢复StandardScaler对象时,需要重新设置特征名称
技术意义
这个修复不仅解决了测试警告问题,更重要的是:
- 保持了预处理管道的完整性
- 确保了特征工程在不同环境间迁移时的可靠性
- 符合scikit-learn对特征名称一致性的严格要求
最佳实践建议
在使用MLJAR-Supervised的预处理模块时,开发者应当注意:
- 对于需要持久化的预处理对象,使用项目提供的序列化方法
- 在不同环境间迁移模型时,确保预处理步骤的完整迁移
- 关注scikit-learn版本更新带来的API变化,特别是特征名称处理相关的变化
这个问题的修复体现了MLJAR-Supervised项目对数据预处理严谨性的重视,确保了机器学习管道在不同环境间迁移时的可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137