Harvester项目v1.4.1至v1.4.2升级问题分析与解决方案
问题背景
在Harvester项目从v1.4.0升级到v1.4.1版本的过程中,用户反馈在某些特定场景下会出现升级卡顿的问题。具体表现为在升级过程中,第一个节点会卡在"Waiting Reboot"状态,导致整个升级流程无法继续。
问题现象
当用户在三个节点的Harvester集群上进行升级时,如果满足以下条件,就可能遇到这个问题:
- 安装v1.4.0版本时,系统盘和数据盘使用了不同的物理磁盘
- 第一个节点在升级过程中会卡在"等待重启"状态
- 通过SSH登录该节点后,会发现系统已进入fallback模式
- 检查发现active.img文件系统已损坏
技术分析
这个问题主要与Harvester的升级机制和文件系统处理有关。在升级过程中,系统会处理cos-state下的active.img和passive.img文件,这些文件包含了操作系统的核心组件。当文件系统损坏时,会导致升级流程无法正常完成。
通过fsck.ext2工具检查active.img文件系统时,可以确认文件系统损坏的情况。正常情况下,这个检查应该显示文件系统完整,没有错误。
解决方案
开发团队针对这个问题提出了多个修复方案,主要涉及harvester-installer组件的修改。这些修改确保了在升级过程中正确处理文件系统,避免损坏情况的发生。
验证过程
为了验证修复效果,测试团队进行了详细的测试:
- 准备三节点v1.4.1集群,确保系统盘和数据盘分离
- 检查分区状态和大小
- 检查active.img和passive.img的磁盘使用情况
- 确认active.img初始状态
- 执行升级到v1.4.2-rc1
- 监控升级过程
- 升级完成后再次检查active.img状态
测试结果显示,修复后的版本可以顺利完成升级,且active.img文件系统保持完整。
注意事项
虽然主要问题已修复,但在测试过程中发现了一个相关的问题:当集群节点具有不同角色(管理节点和工作节点)时,升级可能会在"Pre-drained"阶段卡住。这个问题可以通过删除instance-manager的PodDisruptionBudget(PDB)来解决,但这属于临时解决方案,建议关注后续版本对此问题的完整修复。
结论
Harvester v1.4.2-rc1版本已有效解决了v1.4.1升级过程中节点卡顿的问题。对于生产环境,建议用户在升级前确保:
- 系统盘和数据盘分离
- 备份重要数据
- 按照官方文档操作
这次问题的解决展示了Harvester团队对系统稳定性的持续改进,也为用户提供了更可靠的升级体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00