PlayCanvas引擎中3D高斯泼溅技术的MCMC支持探索
高斯泼溅技术简介
3D高斯泼溅(3D Gaussian Splatting)是近年来计算机图形学中新兴的一种渲染技术,它通过大量微小的3D高斯分布来近似复杂场景的几何形状和外观特性。这项技术在实时渲染、点云可视化等领域展现出巨大潜力,能够高效地表示复杂场景同时保持较高的视觉质量。
MCMC方法在高斯泼溅中的应用
马尔可夫链蒙特卡洛(MCMC)方法是一种统计采样技术,最近被引入到高斯泼溅技术中。PostShot等工具已经实现了对MCMC的支持,据用户反馈,这种方法能够显著提升渲染质量。MCMC通过更智能的采样策略,可以更好地捕捉场景中的细节和复杂结构。
PlayCanvas引擎的兼容性挑战
当用户尝试在PlayCanvas引擎的SuperSplat工具中加载MCMC生成的高斯泼溅模型时,遇到了几个技术挑战:
-
远距离大尺寸泼溅问题:MCMC生成的文件中包含了距离场景中心很远的超大尺寸泼溅点,导致相机初始化位置不理想,整个场景看起来支离破碎。
-
渲染闪烁现象:即使删除了远处的泼溅点,场景中仍会出现明显的渲染闪烁,这是由于已删除的泼溅点仍被包含在排序桶中导致的性能问题。
-
压缩前后的视觉差异:有趣的是,经过压缩保存后重新加载的模型,其视觉效果会有明显改善,这揭示了引擎内部处理机制的一些特性。
技术解决方案
针对这些问题,PlayCanvas开发团队提出了以下解决方案:
-
泼溅点动态移除机制:改进引擎使其能够真正从渲染管线中移除被删除的泼溅点,而不仅仅是将其设为透明。这需要更新快速桶排序算法,使其忽略已删除的泼溅点。
-
工作流程优化建议:建议用户先保存编辑后的未压缩场景,确认效果后再进行压缩导出。压缩过程是有损的,直接压缩原始文件可能导致质量损失。
-
渲染性能优化:新的处理机制不仅解决了闪烁问题,还能在编辑过程中提升场景的渲染性能。
实践建议
对于希望在高斯泼溅中使用MCMC方法的技术人员,建议遵循以下工作流程:
- 加载原始MCMC生成的高斯泼溅模型
- 使用数据面板工具识别并删除远离场景中心的异常大尺寸泼溅点
- 保存编辑后的未压缩版本进行验证
- 确认效果满意后,再导出压缩版本用于实际应用
未来展望
随着3D高斯泼溅技术的不断发展,PlayCanvas引擎的持续优化将为实时渲染领域带来更多可能性。MCMC等高级采样方法的集成,有望进一步提升复杂场景的渲染质量和效率,为游戏开发、虚拟现实等应用场景提供更强大的技术支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00