VitePWA插件中资产文件预缓存配置的注意事项
问题背景
在使用VitePWA插件(vite-plugin-pwa)进行PWA开发时,开发者经常需要将静态资源文件(如图片、JSON等)预缓存到Service Worker中。在从0.20.0版本升级到0.20.1版本后,部分开发者发现原先通过includeAssets
配置能够正常预缓存的资源文件突然失效了。
技术原理分析
VitePWA插件提供了两种主要方式来预缓存静态资源:
-
public目录资源:放置在项目public目录下的文件会被Vite自动复制到输出目录(dist),这些文件可以通过
includeAssets
配置项指定哪些需要被Service Worker预缓存。 -
src/assets目录资源:位于src/assets目录下的资源文件处理方式有所不同。Vite只会打包那些被代码显式引用的资源文件(通过import或img标签src属性等),未被引用的文件不会出现在最终构建产物中。
版本变更带来的影响
在0.20.0版本中,一些开发者发现可以通过includeAssets
配置包含src/assets目录下的资源文件。这实际上是特定版本下的一个非预期行为,因为按照设计原则,includeAssets
应该只处理public目录下的文件。
0.20.1版本修复了这个问题,将内部使用的glob库从fast-glob替换为tinyglobby,同时修正了资源收集的行为,使其严格遵循public目录的限制。
正确解决方案
对于需要预缓存src/assets目录下资源的需求,应该使用injectManifest.globPatterns
配置项。这个配置专门用于指定需要被Service Worker预缓存的资源文件路径模式,不受public目录限制。
示例配置:
{
injectManifest: {
globPatterns: [
'**/*.{js,css,html}',
'assets/images/**/*.{png,jpg}'
]
}
}
最佳实践建议
-
将需要预缓存的通用静态资源(如favicon、robots.txt等)放在public目录下,并使用
includeAssets
配置。 -
对于应用内容相关的资源(如图片、JSON数据等),建议:
- 通过代码显式引用它们(确保它们会被Vite处理)
- 使用
injectManifest.globPatterns
将它们加入预缓存列表
-
注意区分开发环境和生产环境的资源处理方式,确保测试覆盖预缓存行为。
通过理解VitePWA插件对资源处理的内部机制,开发者可以更准确地配置预缓存策略,避免因版本升级带来的意外行为变化。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









