Cleanlab项目中多标注者标签数据的处理实践
多标注者标签数据的基本概念
在机器学习项目中,我们经常会遇到需要处理多标注者标签数据的情况。Cleanlab作为一个专注于数据质量的开源项目,提供了强大的工具来处理这类数据。多标注者标签数据指的是同一批数据由多个标注者分别进行标注,每个标注者可能给出不同的标签结果。
数据准备的关键要点
当使用Cleanlab处理多标注者标签数据时,需要注意以下几点:
-
有效标注者要求:每个包含在multiannotator_labels数组中的标注者必须至少标注了一个样本。如果某列全部为NaN值,Cleanlab会抛出错误提示"labels_multiannotator cannot have columns with all NaN, each annotator must annotator at least one example"。
-
数据组织方式:multiannotator_labels数组应当只包含已标注数据(X_labeled)的标签信息。未标注数据(X_unlabeled)不应该出现在这个数组中。
-
单标注者场景:当标签数据来自单一外部来源而非多个标注者时,可以将其视为单一标注者处理。这种情况下,Cleanlab仍能有效工作,但无法学习不同标注者之间的差异。
实际应用案例:经济实体分类
在一个经济实体自动分类项目中,研究人员需要处理Nace Rev 2.1分类标准的更新问题。该项目面临以下特点:
- 每个经济实体只有一个主经济活动分类代码
- 部分旧代码被拆分为多个新代码
- 已有部分样本的新分类标签(来自调查数据)
这种情况下,可以将调查获得的新标签视为单一标注者的结果。虽然无法分析多个标注者的差异,但Cleanlab仍能帮助识别数据质量问题并改进模型。
最佳实践建议
-
数据预处理:在使用Cleanlab前,确保过滤掉全为NaN的标注者列,只保留至少有一个有效标注的标注者数据。
-
模型训练:当有足够的高质量标注数据时,建议直接在这些数据上训练模型,以获得更可靠的预测结果。
-
标签一致性检查:即使只有一个标注者,Cleanlab也能帮助识别潜在的标签错误或异常样本。
-
逐步扩展:可以从单一标注者开始,随着更多标注者加入,逐步过渡到多标注者分析模式。
通过遵循这些实践原则,研究人员可以更有效地利用Cleanlab工具处理各种标签数据场景,提升机器学习项目的整体质量。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C061
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0131
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00