Cleanlab项目中多标注者标签数据的处理实践
多标注者标签数据的基本概念
在机器学习项目中,我们经常会遇到需要处理多标注者标签数据的情况。Cleanlab作为一个专注于数据质量的开源项目,提供了强大的工具来处理这类数据。多标注者标签数据指的是同一批数据由多个标注者分别进行标注,每个标注者可能给出不同的标签结果。
数据准备的关键要点
当使用Cleanlab处理多标注者标签数据时,需要注意以下几点:
-
有效标注者要求:每个包含在multiannotator_labels数组中的标注者必须至少标注了一个样本。如果某列全部为NaN值,Cleanlab会抛出错误提示"labels_multiannotator cannot have columns with all NaN, each annotator must annotator at least one example"。
-
数据组织方式:multiannotator_labels数组应当只包含已标注数据(X_labeled)的标签信息。未标注数据(X_unlabeled)不应该出现在这个数组中。
-
单标注者场景:当标签数据来自单一外部来源而非多个标注者时,可以将其视为单一标注者处理。这种情况下,Cleanlab仍能有效工作,但无法学习不同标注者之间的差异。
实际应用案例:经济实体分类
在一个经济实体自动分类项目中,研究人员需要处理Nace Rev 2.1分类标准的更新问题。该项目面临以下特点:
- 每个经济实体只有一个主经济活动分类代码
- 部分旧代码被拆分为多个新代码
- 已有部分样本的新分类标签(来自调查数据)
这种情况下,可以将调查获得的新标签视为单一标注者的结果。虽然无法分析多个标注者的差异,但Cleanlab仍能帮助识别数据质量问题并改进模型。
最佳实践建议
-
数据预处理:在使用Cleanlab前,确保过滤掉全为NaN的标注者列,只保留至少有一个有效标注的标注者数据。
-
模型训练:当有足够的高质量标注数据时,建议直接在这些数据上训练模型,以获得更可靠的预测结果。
-
标签一致性检查:即使只有一个标注者,Cleanlab也能帮助识别潜在的标签错误或异常样本。
-
逐步扩展:可以从单一标注者开始,随着更多标注者加入,逐步过渡到多标注者分析模式。
通过遵循这些实践原则,研究人员可以更有效地利用Cleanlab工具处理各种标签数据场景,提升机器学习项目的整体质量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00