Cleanlab项目中多标注者标签数据的处理实践
多标注者标签数据的基本概念
在机器学习项目中,我们经常会遇到需要处理多标注者标签数据的情况。Cleanlab作为一个专注于数据质量的开源项目,提供了强大的工具来处理这类数据。多标注者标签数据指的是同一批数据由多个标注者分别进行标注,每个标注者可能给出不同的标签结果。
数据准备的关键要点
当使用Cleanlab处理多标注者标签数据时,需要注意以下几点:
-
有效标注者要求:每个包含在multiannotator_labels数组中的标注者必须至少标注了一个样本。如果某列全部为NaN值,Cleanlab会抛出错误提示"labels_multiannotator cannot have columns with all NaN, each annotator must annotator at least one example"。
-
数据组织方式:multiannotator_labels数组应当只包含已标注数据(X_labeled)的标签信息。未标注数据(X_unlabeled)不应该出现在这个数组中。
-
单标注者场景:当标签数据来自单一外部来源而非多个标注者时,可以将其视为单一标注者处理。这种情况下,Cleanlab仍能有效工作,但无法学习不同标注者之间的差异。
实际应用案例:经济实体分类
在一个经济实体自动分类项目中,研究人员需要处理Nace Rev 2.1分类标准的更新问题。该项目面临以下特点:
- 每个经济实体只有一个主经济活动分类代码
- 部分旧代码被拆分为多个新代码
- 已有部分样本的新分类标签(来自调查数据)
这种情况下,可以将调查获得的新标签视为单一标注者的结果。虽然无法分析多个标注者的差异,但Cleanlab仍能帮助识别数据质量问题并改进模型。
最佳实践建议
-
数据预处理:在使用Cleanlab前,确保过滤掉全为NaN的标注者列,只保留至少有一个有效标注的标注者数据。
-
模型训练:当有足够的高质量标注数据时,建议直接在这些数据上训练模型,以获得更可靠的预测结果。
-
标签一致性检查:即使只有一个标注者,Cleanlab也能帮助识别潜在的标签错误或异常样本。
-
逐步扩展:可以从单一标注者开始,随着更多标注者加入,逐步过渡到多标注者分析模式。
通过遵循这些实践原则,研究人员可以更有效地利用Cleanlab工具处理各种标签数据场景,提升机器学习项目的整体质量。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00