PyWebCopy 使用教程
1. 项目介绍
PyWebCopy 是一个开源的工具,用于将完整的或部分的网站内容复制到本地硬盘,以便离线查看。它可以扫描指定的网站,并下载其内容到本地硬盘。网站中的资源链接,如样式表、图片和其他页面将自动映射到本地路径。通过其丰富的配置,用户可以定义要复制网站的哪些部分以及如何复制。
PyWebCopy 会检查网站的 HTML 标记,并尝试发现所有链接的资源,如其他页面、图片、视频、文件下载等。它会下载所有这些资源,并继续搜索更多资源。以这种方式,WebCopy 可以“爬取”整个网站并下载它看到的所有内容,以努力创建一个合理的源网站副本。
需要注意的是,PyWebCopy 不包括虚拟 DOM 或任何形式的 JavaScript 解析。如果网站大量使用 JavaScript 来操作,那么它可能无法生成真实的副本,因为它无法发现由 JavaScript 动态生成的所有链接。
2. 项目快速启动
首先,确保已经安装了 PyWebCopy。可以通过 pip 命令进行安装:
pip install pywebcopy
保存单个网页
from pywebcopy import save_webpage
save_webpage(
url="https://example.com/",
project_folder="E:/savedpages/",
project_name="example_site",
bypass_robots=True,
debug=True,
open_in_browser=True
)
保存整个网站
from pywebcopy import save_website
save_website(
url="https://example.com/",
project_folder="E:/savedpages/",
project_name="example_site",
bypass_robots=True,
debug=True,
open_in_browser=True
)
上述代码中,url
是要保存的网站的 URL,project_folder
是本地保存路径,project_name
是项目名称。bypass_robots
用于绕过网站的 robots.txt 文件限制,debug
用于开启调试模式,open_in_browser
用于在任务完成后在浏览器中打开页面。
3. 应用案例和最佳实践
离线浏览
使用 PyWebCopy 可以轻松实现网站的离线浏览。例如,在无网络环境下,可以预先使用 PyWebCopy 保存需要的网页或整个网站,然后在离线状态下进行查看。
数据抓取
对于需要进行数据分析和研究的用户,PyWebCopy 可以快速获取网站的静态内容,以便进一步分析和处理。
内容备份
对于网站内容的备份,PyWebCopy 提供了一个简单的方法来保存网站的内容,以防原始网站出现故障或内容更改。
4. 典型生态项目
PyWebCopy 作为 Python 的一个库,可以与其他数据分析和处理库(如 Pandas、BeautifulSoup)结合使用,以实现更复杂的数据处理和抓取任务。开源社区中也有许多基于 PyWebCopy 的项目,它们扩展了 PyWebCopy 的功能和用途,例如用于教育、研究和其他开发项目的工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









