Yolo Tracking项目中使用YOLOv5作为检测器的技术方案
2025-05-31 22:27:50作者:申梦珏Efrain
背景介绍
Yolo Tracking是一个基于YOLO系列模型的实时目标跟踪框架,目前主要支持YOLOv8、YOLOX和YOLO-NAS等模型。然而在实际应用中,许多开发者仍然需要使用YOLOv5模型进行目标检测,这就产生了如何在Yolo Tracking框架中集成YOLOv5的问题。
技术挑战
Yolo Tracking项目在设计时主要考虑了以下几点技术限制:
- 依赖管理:项目尽量避免使用子模块(submodule),以简化依赖管理
- 模型兼容性:当前代码中明确检查模型名称是否包含"yolox"、"yolo_nas"或"yolov8"
- 架构差异:YOLOv5与YOLOv8在模型结构和输出格式上存在差异
解决方案
方案一:直接集成YOLOv5
要在Yolo Tracking中直接使用YOLOv5,需要进行以下修改:
-
添加YOLOv5模块:
- 将Ultralytics的YOLOv5官方实现添加为模块
- 修改项目依赖配置以包含YOLOv5
-
创建新的检测器接口:
- 在
examples/detectors/目录下创建yolov5.py - 实现与现有YOLO接口兼容的检测器类
- 修改
__init__.py以支持YOLOv5模型加载
- 在
-
适配输出格式:
- 确保YOLOv5的输出格式与跟踪模块期望的输入格式一致
- 处理可能的输出维度差异
方案二:分离式处理
对于不想修改项目代码的开发者,可以采用分离式处理方案:
-
独立运行YOLOv5检测:
- 使用YOLOv5官方代码进行目标检测
- 将检测结果按帧保存为列表格式
-
结果后处理:
- 将检测结果转换为标准格式:
detections = [dets_frame1, dets_frame2, ..., dets_frameN] - 可考虑使用pickle或JSON格式保存中间结果
- 将检测结果转换为标准格式:
-
使用BoxMOT进行跟踪:
- 加载预处理好的检测结果
- 直接调用Yolo Tracking提供的跟踪模块接口
- 支持OC-SORT、DeepOCSORT等多种跟踪算法
实施建议
对于大多数开发者,推荐采用分离式处理方案,因为:
- 维护性更好:不需要修改项目核心代码
- 灵活性更高:可以自由选择YOLOv5的任何版本
- 可扩展性强:同样的方法适用于其他检测器的集成
如果必须直接集成YOLOv5,建议:
- 仔细研究YOLOv8接口实现,确保兼容性
- 注意处理YOLOv5特有的预处理/后处理逻辑
- 考虑性能优化,特别是推理和跟踪的流水线设计
总结
在Yolo Tracking项目中使用YOLOv5作为检测器是完全可行的,开发者可以根据自身需求选择直接集成或分离式处理的方案。分离式处理方案更适合快速验证和原型开发,而直接集成方案则适合长期维护的项目。无论哪种方案,都需要注意保持检测输出与跟踪模块输入的格式一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
520
3.7 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
761
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
301
347
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1