Yolo Tracking项目中使用YOLOv5作为检测器的技术方案
2025-05-31 23:09:31作者:申梦珏Efrain
背景介绍
Yolo Tracking是一个基于YOLO系列模型的实时目标跟踪框架,目前主要支持YOLOv8、YOLOX和YOLO-NAS等模型。然而在实际应用中,许多开发者仍然需要使用YOLOv5模型进行目标检测,这就产生了如何在Yolo Tracking框架中集成YOLOv5的问题。
技术挑战
Yolo Tracking项目在设计时主要考虑了以下几点技术限制:
- 依赖管理:项目尽量避免使用子模块(submodule),以简化依赖管理
- 模型兼容性:当前代码中明确检查模型名称是否包含"yolox"、"yolo_nas"或"yolov8"
- 架构差异:YOLOv5与YOLOv8在模型结构和输出格式上存在差异
解决方案
方案一:直接集成YOLOv5
要在Yolo Tracking中直接使用YOLOv5,需要进行以下修改:
-
添加YOLOv5模块:
- 将Ultralytics的YOLOv5官方实现添加为模块
- 修改项目依赖配置以包含YOLOv5
-
创建新的检测器接口:
- 在
examples/detectors/目录下创建yolov5.py - 实现与现有YOLO接口兼容的检测器类
- 修改
__init__.py以支持YOLOv5模型加载
- 在
-
适配输出格式:
- 确保YOLOv5的输出格式与跟踪模块期望的输入格式一致
- 处理可能的输出维度差异
方案二:分离式处理
对于不想修改项目代码的开发者,可以采用分离式处理方案:
-
独立运行YOLOv5检测:
- 使用YOLOv5官方代码进行目标检测
- 将检测结果按帧保存为列表格式
-
结果后处理:
- 将检测结果转换为标准格式:
detections = [dets_frame1, dets_frame2, ..., dets_frameN] - 可考虑使用pickle或JSON格式保存中间结果
- 将检测结果转换为标准格式:
-
使用BoxMOT进行跟踪:
- 加载预处理好的检测结果
- 直接调用Yolo Tracking提供的跟踪模块接口
- 支持OC-SORT、DeepOCSORT等多种跟踪算法
实施建议
对于大多数开发者,推荐采用分离式处理方案,因为:
- 维护性更好:不需要修改项目核心代码
- 灵活性更高:可以自由选择YOLOv5的任何版本
- 可扩展性强:同样的方法适用于其他检测器的集成
如果必须直接集成YOLOv5,建议:
- 仔细研究YOLOv8接口实现,确保兼容性
- 注意处理YOLOv5特有的预处理/后处理逻辑
- 考虑性能优化,特别是推理和跟踪的流水线设计
总结
在Yolo Tracking项目中使用YOLOv5作为检测器是完全可行的,开发者可以根据自身需求选择直接集成或分离式处理的方案。分离式处理方案更适合快速验证和原型开发,而直接集成方案则适合长期维护的项目。无论哪种方案,都需要注意保持检测输出与跟踪模块输入的格式一致性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328