Apify CLI 实战:如何将 Scrapy 项目迁移至 Apify 平台
2025-06-24 06:47:52作者:鲍丁臣Ursa
前言
对于 Python 开发者而言,Scrapy 是构建网络爬虫的首选框架之一。而 Apify 平台则提供了强大的爬虫执行环境和部署能力。本文将详细介绍如何通过 Apify CLI 工具将现有的 Scrapy 项目无缝迁移至 Apify 平台,使其成为功能完备的 Apify Actor。
准备工作
安装 Apify CLI
在开始之前,需要确保已安装 Apify CLI 工具。提供两种安装方式:
- 使用 Homebrew 安装(推荐 macOS 用户):
brew install apify-cli
- 使用 NPM 安装:
npm i -g apify-cli
安装完成后,可以通过运行 apify -v 验证安装是否成功。
Scrapy 项目转换实战
项目结构检查
确保你的 Scrapy 项目结构完整,典型的项目目录应包含:
your_scraper/
├── scrapy.cfg
├── your_scraper/
│ ├── __init__.py
│ ├── items.py
│ ├── pipelines.py
│ ├── settings.py
│ └── spiders/
│ ├── __init__.py
│ └── your_spider.py
初始化 Apify 项目
在项目根目录(包含 scrapy.cfg 的目录)执行:
apify init
CLI 工具会引导你完成以下配置:
- 输入 Scrapy 的 BOT_NAME(可在 settings.py 中找到)
- 指定蜘蛛模块所在目录(SPIDER_MODULES 设置)
- 选择要包装的具体蜘蛛
成功后会看到类似输出:
Success: The Scrapy project has been wrapped successfully.
本地运行与测试
创建虚拟环境
python -m virtualenv .venv
source .venv/bin/activate
安装依赖
pip install -r requirements-apify.txt -r requirements.txt
执行爬虫
apify run
运行结果默认存储在 storage/datasets/default/ 目录中。
部署到 Apify 平台
登录账户
apify login
系统会提示输入 API Token。
部署项目
apify push
部署完成后,可以在 Apify 控制台的"我的 Actors"中查看和管理。
技术实现解析
核心组件替换
Apify CLI 在包装过程中会替换 Scrapy 的以下核心组件:
-
调度器(Scheduler):
- 原版:Scrapy 默认调度器
- 替换为:ApifyScheduler
- 功能:与 Apify 请求队列集成
-
数据处理管道(Pipeline):
- 新增:ActorDatasetPushPipeline
- 作用:将抓取结果自动推送至 Apify 数据集
-
重试中间件(RetryMiddleware):
- 原版:Scrapy 默认重试中间件
- 替换为:ApifyRetryMiddleware
- 改进:与 Apify 请求队列深度集成
-
代理中间件(HttpProxyMiddleware):
- 原版:Scrapy 默认代理中间件
- 替换为:ApifyHttpProxyMiddleware
- 优势:支持 Apify 的代理配置系统
异步处理机制
Scrapy 基于 Twisted 的异步机制与 Apify 的 AsyncIO 存在兼容性问题。解决方案:
- 使用 nest-asyncio 库处理事件循环嵌套
- 在蜘蛛代码中执行异步操作时,使用专用方法:
from apify.scrapy.utils import nested_event_loop
await nested_event_loop.run_until_complete(my_coroutine())
最佳实践与限制
项目结构建议
- 单个 Actor 对应单个 Spider
- 共享组件可通过 Python 包方式复用
- 输入参数通过 input_schema.json 配置
已知限制
-
异步代码兼容性:
- 避免在蜘蛛中混用 Twisted 和 AsyncIO 代码
- 必须使用提供的嵌套事件循环工具
-
多蜘蛛支持:
- 不建议单个 Actor 运行多个蜘蛛
- 每个蜘蛛应有独立的请求队列和输出存储
结语
通过 Apify CLI 工具,开发者可以轻松将现有的 Scrapy 项目迁移至 Apify 平台,享受云原生的爬虫执行环境。本文详细介绍了从本地开发到云端部署的全流程,以及底层技术实现细节。希望这些内容能帮助你顺利完成项目迁移。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.31 K
暂无简介
Dart
622
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
263
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
794
77