Apify CLI 实战:如何将 Scrapy 项目迁移至 Apify 平台
2025-06-24 17:31:20作者:鲍丁臣Ursa
前言
对于 Python 开发者而言,Scrapy 是构建网络爬虫的首选框架之一。而 Apify 平台则提供了强大的爬虫执行环境和部署能力。本文将详细介绍如何通过 Apify CLI 工具将现有的 Scrapy 项目无缝迁移至 Apify 平台,使其成为功能完备的 Apify Actor。
准备工作
安装 Apify CLI
在开始之前,需要确保已安装 Apify CLI 工具。提供两种安装方式:
- 使用 Homebrew 安装(推荐 macOS 用户):
brew install apify-cli
- 使用 NPM 安装:
npm i -g apify-cli
安装完成后,可以通过运行 apify -v 验证安装是否成功。
Scrapy 项目转换实战
项目结构检查
确保你的 Scrapy 项目结构完整,典型的项目目录应包含:
your_scraper/
├── scrapy.cfg
├── your_scraper/
│ ├── __init__.py
│ ├── items.py
│ ├── pipelines.py
│ ├── settings.py
│ └── spiders/
│ ├── __init__.py
│ └── your_spider.py
初始化 Apify 项目
在项目根目录(包含 scrapy.cfg 的目录)执行:
apify init
CLI 工具会引导你完成以下配置:
- 输入 Scrapy 的 BOT_NAME(可在 settings.py 中找到)
- 指定蜘蛛模块所在目录(SPIDER_MODULES 设置)
- 选择要包装的具体蜘蛛
成功后会看到类似输出:
Success: The Scrapy project has been wrapped successfully.
本地运行与测试
创建虚拟环境
python -m virtualenv .venv
source .venv/bin/activate
安装依赖
pip install -r requirements-apify.txt -r requirements.txt
执行爬虫
apify run
运行结果默认存储在 storage/datasets/default/ 目录中。
部署到 Apify 平台
登录账户
apify login
系统会提示输入 API Token。
部署项目
apify push
部署完成后,可以在 Apify 控制台的"我的 Actors"中查看和管理。
技术实现解析
核心组件替换
Apify CLI 在包装过程中会替换 Scrapy 的以下核心组件:
-
调度器(Scheduler):
- 原版:Scrapy 默认调度器
- 替换为:ApifyScheduler
- 功能:与 Apify 请求队列集成
-
数据处理管道(Pipeline):
- 新增:ActorDatasetPushPipeline
- 作用:将抓取结果自动推送至 Apify 数据集
-
重试中间件(RetryMiddleware):
- 原版:Scrapy 默认重试中间件
- 替换为:ApifyRetryMiddleware
- 改进:与 Apify 请求队列深度集成
-
代理中间件(HttpProxyMiddleware):
- 原版:Scrapy 默认代理中间件
- 替换为:ApifyHttpProxyMiddleware
- 优势:支持 Apify 的代理配置系统
异步处理机制
Scrapy 基于 Twisted 的异步机制与 Apify 的 AsyncIO 存在兼容性问题。解决方案:
- 使用 nest-asyncio 库处理事件循环嵌套
- 在蜘蛛代码中执行异步操作时,使用专用方法:
from apify.scrapy.utils import nested_event_loop
await nested_event_loop.run_until_complete(my_coroutine())
最佳实践与限制
项目结构建议
- 单个 Actor 对应单个 Spider
- 共享组件可通过 Python 包方式复用
- 输入参数通过 input_schema.json 配置
已知限制
-
异步代码兼容性:
- 避免在蜘蛛中混用 Twisted 和 AsyncIO 代码
- 必须使用提供的嵌套事件循环工具
-
多蜘蛛支持:
- 不建议单个 Actor 运行多个蜘蛛
- 每个蜘蛛应有独立的请求队列和输出存储
结语
通过 Apify CLI 工具,开发者可以轻松将现有的 Scrapy 项目迁移至 Apify 平台,享受云原生的爬虫执行环境。本文详细介绍了从本地开发到云端部署的全流程,以及底层技术实现细节。希望这些内容能帮助你顺利完成项目迁移。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178