Spring AI 项目中整合 Vertex AI 模型与 JDBC 存储时的问题分析与解决方案
问题背景
在使用 Spring AI 1.0.0 版本与 Spring Boot 3.4.6 构建聊天应用时,开发者尝试将 Vertex AI 的 Gemini 模型与 MySQL 数据库存储结合使用时,遇到了应用启动失败的问题。核心错误表现为 NoClassDefFoundError: com/google/protobuf/GeneratedMessageV3,这表明系统在运行时无法找到 Protobuf 相关的关键类。
错误现象深度分析
当开发者配置了基于 JDBC 的聊天记忆存储库(JdbcChatMemoryRepository)并尝试启动应用时,控制台输出了详细的错误堆栈。从技术角度来看,这个问题的根源不在于 JDBC 存储配置本身,而是与 Vertex AI 模型依赖的 Protobuf 库版本冲突有关。
错误堆栈显示,系统在初始化 VertexAiGeminiChatModel 时失败,具体是在尝试加载 Protobuf 的 GeneratedMessageV3 类时发生了类找不到异常。这种情况通常发生在:
- 依赖项中缺少必要的 Protobuf 库
- 项目中存在多个版本的 Protobuf 库导致冲突
- 类加载器无法正确加载所需的类
根本原因
经过对示例项目的依赖分析,发现项目中同时引入了两个不同版本的 Protobuf 库:
- protobuf-java 4.26.1
- protobuf-java 3.25.5
这种版本冲突导致了运行时类加载失败。Protobuf 的不同主版本间存在二进制不兼容性,特别是 GeneratedMessageV3 类在不同版本中的实现可能有显著差异。
解决方案
方案一:统一 Protobuf 版本
最彻底的解决方案是统一项目中的 Protobuf 依赖版本。可以通过以下步骤实现:
- 在 build.gradle 中显式声明 Protobuf 版本:
configurations.all {
resolutionStrategy {
force 'com.google.protobuf:protobuf-java:4.26.1'
}
}
- 运行
./gradlew dependencies命令验证所有依赖是否使用了统一的 Protobuf 版本
方案二:升级 Spring Boot 版本
根据开发者反馈,该问题在 Spring Boot 3.5.0 中已不复存在。这是因为新版本的 Spring Boot 可能已经更新了相关依赖,解决了版本冲突问题。
升级 Spring Boot 版本的步骤:
- 修改 build.gradle 中的 Spring Boot 版本号
- 重新同步项目依赖
- 清理并重建项目
方案三:排除冲突依赖
如果无法立即升级 Spring Boot,可以尝试排除冲突的依赖:
implementation('org.springframework.ai:spring-ai-vertex-ai-gemini') {
exclude group: 'com.google.protobuf', module: 'protobuf-java'
}
最佳实践建议
- 依赖管理:在大型项目中,始终使用 dependencyManagement 或 BOM 文件来统一管理依赖版本
- 冲突检测:定期使用
gradle dependencies或mvn dependency:tree检查依赖冲突 - 版本兼容性:在选择 Spring AI 和 Spring Boot 版本时,参考官方文档的兼容性矩阵
- 环境一致性:确保开发、测试和生产环境使用相同的依赖版本
技术原理延伸
Protobuf (Protocol Buffers) 是 Google 开发的一种高效的数据序列化格式。在 Spring AI 与 Vertex AI 集成时,Protobuf 用于:
- 模型配置的序列化与反序列化
- 客户端与服务器间的通信协议
- 模型参数的内部表示
当不同版本的 Protobuf 库共存时,由于序列化格式和内部API的变化,可能导致运行时错误。特别是 GeneratedMessageV3 作为核心基类,其变化会影响所有生成的 Protobuf 消息类。
总结
在 Spring AI 项目中整合 Vertex AI 模型与 JDBC 存储时遇到的启动问题,本质上是依赖管理问题而非功能实现问题。通过统一 Protobuf 版本或升级 Spring Boot 版本可以有效解决。这也提醒我们在引入多个AI相关依赖时,需要特别注意底层库的版本兼容性。良好的依赖管理实践是构建稳定AI应用的基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00