首页
/ Unsloth项目中Gemma 3模型训练时标签全为-100的问题解析

Unsloth项目中Gemma 3模型训练时标签全为-100的问题解析

2025-05-03 11:11:52作者:廉皓灿Ida

在使用Unsloth项目训练Gemma 3模型时,开发者可能会遇到一个特定的错误:"ZeroDivisionError: Unsloth: All labels in your dataset are -100. Training losses will be all 0."。这个问题通常出现在尝试使用train_on_responses_only函数进行训练时。

问题本质

这个错误表明在训练数据集中,所有的标签都被设置为-100。在自然语言处理任务中,-100通常被用作特殊标记,表示该位置的token在训练过程中应该被忽略(不参与损失计算)。当所有标签都是-100时,模型实际上没有任何有效的监督信号可以学习,导致训练损失始终为0。

根本原因

经过分析,这个问题最常见的原因是chat模板中的指令部分和响应部分的定义不正确。对于Gemma 3模型,其对话格式使用了特定的标记:

  • 用户输入以"<start_of_turn>user\n"开头
  • 模型响应以"<start_of_turn>model\n"开头

如果开发者错误地使用了简化的"user\n"和"model\n"作为分隔符,就会导致模板匹配失败,进而使得所有标签都被错误地标记为-100。

解决方案

正确的做法是使用Gemma 3特定的对话标记来定义指令和响应部分:

from unsloth.chat_templates import train_on_responses_only

trainer = train_on_responses_only(
    trainer,
    instruction_part="<start_of_turn>user\n",
    response_part="<start_of_turn>model\n",
)

调试建议

如果问题仍然存在,开发者可以采取以下调试步骤:

  1. 检查训练数据集中的实际对话格式,确保与模板定义一致
  2. 打印出部分样本,验证指令和响应部分是否正确分割
  3. 检查tokenizer的输出,确认标签分布情况
  4. 确保max_seq_length设置合理,不会导致大量截断

技术背景

在transformer模型训练中,-100标签的设计是为了实现"仅预测响应部分"的训练策略。模型会忽略指令部分的损失计算,专注于学习如何生成高质量的响应。这种技术常见于对话系统的微调过程中,可以有效提高模型生成相关响应的能力。

理解并正确配置chat模板对于成功训练Gemma 3模型至关重要。开发者应当仔细研究目标模型的特定对话格式要求,确保训练配置与模型预期完全匹配。

登录后查看全文
热门项目推荐
相关项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8