Drizzle ORM 与 Drizzle Kit 中数据库内省问题的分析与解决方案
问题背景
在使用 Drizzle ORM 和 Drizzle Kit 进行数据库开发时,许多开发者遇到了一个常见错误:"TypeError: Cannot read properties of undefined (reading 'toLowerCase')"。这个问题主要出现在执行 drizzle-kit introspect 或 drizzle-kit push 命令时,特别是在使用 Supabase 连接池的情况下。
错误现象
当开发者尝试从现有数据库内省模式或推送模式变更时,会遇到以下错误堆栈:
const onUpdate = fk4.update_rule.toLowerCase();
^
TypeError: Cannot read properties of undefined (reading 'toLowerCase')
这个错误表明 Drizzle Kit 在处理外键约束的更新规则时,遇到了未定义的 update_rule 属性。
根本原因
经过分析,这个问题主要与以下因素相关:
-
连接池模式:当使用 Supabase 的连接池(端口 6543)时,Drizzle Kit 在处理数据库元数据查询时会出现不一致性。
-
事务隔离:Supabase 的连接池在事务模式下(Transaction Mode)会干扰 Drizzle Kit 对数据库元数据的查询。
-
版本兼容性:早期版本的 Drizzle Kit 在处理某些数据库元数据时缺乏足够的错误处理机制。
解决方案
1. 使用非连接池端口
对于 Supabase 用户,最简单的解决方案是改用非连接池端口(5432):
export default defineConfig({
schema: "./src/db/schema.ts",
dialect: "postgresql",
dbCredentials: {
host: "your-supabase-host",
port: 5432, // 使用非连接池端口
user: "your-user",
password: "your-password",
database: "postgres"
}
});
2. 更新 Drizzle Kit 版本
确保使用 Drizzle Kit 0.24.1 或更高版本,该版本包含了针对此问题的修复:
npm install drizzle-kit@latest
3. 重建数据库结构
如果问题仍然存在,可以考虑以下步骤:
- 备份现有数据
- 删除所有表
- 重新运行
drizzle-kit push命令
这种方法特别适用于开发环境,可以确保数据库结构与 Drizzle 模式定义完全一致。
技术深入
连接池的影响
Supabase 的连接池服务(端口 6543)使用事务模式时,会复用数据库连接。这可能导致 Drizzle Kit 在查询 information_schema 表时获取到不完整的元数据,特别是外键约束信息。
Drizzle Kit 的工作原理
Drizzle Kit 在执行内省操作时,会查询以下系统表:
information_schema.tables- 获取表信息information_schema.columns- 获取列信息information_schema.key_column_usage- 获取主键和外键信息
当这些查询在连接池环境下执行时,可能会返回不完整的结果集,导致后续处理出错。
最佳实践
- 开发环境:使用非连接池端口(5432)进行开发和模式迁移
- 生产环境:考虑使用专门的迁移工具或在 CI/CD 流程中处理数据库变更
- 版本控制:始终将数据库模式定义文件纳入版本控制
- 测试策略:在测试环境中验证所有数据库变更
总结
Drizzle ORM 和 Drizzle Kit 作为现代 TypeScript 数据库工具链,在大多数情况下表现良好。遇到 "toLowerCase" 错误时,开发者应首先考虑连接池配置问题,并尝试上述解决方案。随着 Drizzle 生态的持续发展,这类问题有望得到更彻底的解决。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00