Tortoise-ORM中auto_now字段更新机制解析
问题现象
在使用Tortoise-ORM时,开发者发现模型中使用auto_now参数的时间字段在调用update()方法时不会自动更新,而期望的行为是在任何数据变更时该字段都能自动更新为当前时间。
技术背景
auto_now是Tortoise-ORM中一个常用的字段参数,通常用于记录模型实例的最后修改时间。当设置为True时,理论上每次保存模型实例时,该字段都会自动更新为当前时间。
根本原因分析
经过深入分析,发现Tortoise-ORM中auto_now字段的更新机制存在以下特点:
-
仅响应save()方法:
auto_now字段只在显式调用模型实例的save()方法时才会自动更新,这是ORM层面的行为。 -
update()方法的特殊性:
update()方法是直接在SQL层面执行更新操作,绕过了ORM的模型实例保存流程,因此不会触发auto_now字段的更新机制。 -
数据库差异:有开发者反馈在某些数据库后端(如SQLite)中
auto_now可能完全失效,而在MySQL等数据库中表现正常,这表明该功能可能对数据库类型有依赖性。
解决方案
针对这一问题,推荐以下几种解决方案:
方案一:使用save()方法替代update()
movie = await Movie.filter(id=pk).first()
if movie:
movie.title = new_title # 更新需要修改的字段
await movie.save() # 调用save()方法触发auto_now更新
方案二:手动更新时间字段
如果必须使用update()方法,可以显式地更新时间字段:
await Movie.filter(id=pk).update(
title=new_title,
updated_at=datetime.now()
)
方案三:使用信号机制
通过Tortoise-ORM的信号系统,在数据更新时自动设置时间字段:
from tortoise.signals import post_save
@post_save(Movie)
async def update_timestamp(sender, instance, created, **kwargs):
if not created:
instance.updated_at = datetime.now()
await instance.save()
最佳实践建议
-
明确区分
update()和save()的使用场景:批量更新使用update(),单条记录修改使用save() -
对于关键时间戳字段,考虑添加数据库层面的触发器作为双重保障
-
在项目初期进行数据库选型时,应测试
auto_now在各目标数据库中的表现 -
重要的时间记录建议采用应用层和数据库层双重记录机制
总结
Tortoise-ORM中auto_now字段的行为设计体现了ORM与直接SQL操作的区别。理解这一机制有助于开发者更合理地设计数据模型和选择适当的更新方法。在需要精确记录修改时间的场景下,建议采用方案一或方案三来确保时间戳的正确更新。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00