SD-Dynamic-Prompts扩展的原始提示保存功能解析
在AI绘画领域,Stable Diffusion的Dynamic Prompts扩展是一个强大的工具,它允许用户使用复杂的语法结构生成多样化的提示词。然而,在实际使用过程中,用户经常遇到一个痛点:当使用PNG Info功能导出图像信息时,原始的动态提示词会被覆盖,导致无法追溯最初的提示词结构。
问题背景
Dynamic Prompts扩展的核心功能之一是支持动态语法,例如使用花括号{}和竖线|来创建变体选择。这种语法让用户能够轻松生成多样化的提示词组合,极大地丰富了创作可能性。然而,当这些动态提示词被解析并应用于图像生成后,系统通常只保存解析后的最终提示词,而原始的动态语法结构则丢失了。
技术实现方案
为了解决这一问题,开发团队在SD-Dynamic-Prompts扩展中实现了一个巧妙的解决方案:
-
自动保存机制:系统会在生成图像的同时,将原始的动态提示词(包含所有语法结构)自动保存到输出目录中
-
文件格式选择:原始提示词以纯文本文件(.txt)形式保存,确保兼容性和易读性
-
组织方式:文件被保存在常规的每日输出文件夹中,与生成的图像保持关联
-
元数据嵌入:在生成的图像文件中,正确的原始提示词会被嵌入到元数据中,而不仅仅是保存解析后的版本
技术优势
这一改进带来了几个显著优势:
-
历史追溯性:用户可以随时查看最初使用的动态提示词结构,便于复制或修改
-
工作流程保护:防止在使用PNG Info等功能时意外覆盖重要提示词
-
研究价值:保存的原始提示词可作为创作过程的记录,有助于分析不同提示词结构的效果
-
兼容性保证:纯文本格式确保在各种环境下都能轻松访问这些信息
用户实践建议
对于使用这一功能的创作者,建议:
-
定期整理输出文件夹,为重要的提示词文件添加描述性名称
-
可以将特别成功的提示词结构保存到专门的库中,作为未来创作的素材
-
结合版本控制工具管理提示词演变过程,形成完整的创作历史
这一功能的实现体现了SD-Dynamic-Prompts扩展对用户实际工作流程的深入理解,解决了创作者在使用动态提示词时的一个关键痛点,使创作过程更加可靠和可追溯。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00