recipe-scrapers 15.7.0版本发布:增强食谱数据抓取能力
recipe-scrapers是一个专注于从各类食谱网站抓取结构化数据的Python库,它能够将网页上的食谱信息转换为标准化的JSON格式,包括菜名、配料、步骤、烹饪时间等关键信息。该项目通过持续更新来支持更多食谱网站,并不断优化现有解析器的准确性。
新增支持的食谱网站
本次15.7.0版本新增了对多个食谱网站的支持,显著扩展了数据抓取范围:
- garnishandglaze.com - 一个专注于装饰和釉料的美食网站
 - zestfulkitchen.com - 提供充满活力的厨房创意食谱
 - tastyoven.com - 专注于烤箱烹饪的食谱资源
 - sizzlefish.com - 海鲜类食谱的专业网站
 - bakewithzoha - 烘焙爱好者的食谱集合
 - healthywithachanceofsprinkles.com - 健康饮食与偶尔放纵的平衡食谱
 - cookinglsl.com - 简单生活风格的烹饪网站
 - organicallyaddison.com - 有机食材为主的健康食谱
 - erinliveswhole.com - 整体生活方式的健康食谱
 - simplegreensmoothies.com - 绿色蔬果汁配方网站
 - loveandlemons.com - 以柠檬为特色的创意食谱
 - thebigmansworld - 大份量美食食谱
 - festligare.se - 瑞典语的节日食谱网站
 - editions-larousse - 法国拉鲁斯出版社的食谱
 - tastinghistory.com - 历史美食重现的独特食谱
 - picnic.app - 带有额外步骤说明的食谱应用
 - amazingoriental.com - 东方美食特色网站
 
核心功能改进
1. 增强的JSON-LD处理能力
针对pioneerwoman和aberlehome等网站,更新了JSON-LD解析逻辑,能够更稳健地处理不完整的食谱结构化数据。JSON-LD是食谱网站常用的结构化数据格式,但各网站实现质量参差不齐。新版本通过更智能的容错机制,确保即使在不完美的数据结构下也能提取关键信息。
2. 自动检测配料分组
引入了对WPRM(WordPress Recipe Maker)和Tasty格式的自动检测功能,能够智能识别常见的配料分组选择器组合。这项改进使得解析器无需针对每个网站硬编码分组规则,就能正确提取分门别类的配料信息,如"酱料"、"腌料"等分组。
3. 请求头优化
为URLOpen请求添加了标准请求头,模拟更真实的浏览器访问行为。这一改进有助于绕过一些网站的反爬虫机制,提高数据获取的成功率。
现有解析器优化
- TasteAU - 修复了指令提取逻辑,确保烹饪步骤完整准确
 - ahealthysliceoflife - 改进了配料解析算法并添加了对配料分组的支持
 - TheRecipeCritic - 统一了命名规范,保持代码风格一致性
 
技术实现亮点
本次更新体现了recipe-scrapers项目的几个重要技术方向:
- 模块化设计:每个食谱网站的解析器都是独立的类,便于维护和扩展
 - 渐进增强:在支持新网站的同时,不断优化现有解析器的健壮性
 - 智能检测:通过模式识别减少硬编码规则,提高解析器的自适应能力
 - 反爬应对:通过模拟真实用户行为,提高在严格网站上的抓取成功率
 
开发者体验
对于使用recipe-scrapers的开发者而言,15.7.0版本带来了更广泛的数据源支持和更稳定的解析表现。新增的网站覆盖了从专业美食出版到个人美食博客的各种类型,而底层解析逻辑的改进则提升了整个库的可靠性。
项目维护团队通过清晰的版本管理和详尽的变更日志,使开发者能够轻松了解每次更新的内容和影响,便于评估升级的必要性和潜在风险。
recipe-scrapers持续证明其作为食谱数据抓取领域领先工具的价值,通过社区贡献和核心团队的努力,不断扩大其应用场景和技术能力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00