机器学习项目笔记:逻辑回归与Softmax回归原理详解
2025-06-07 21:46:17作者:姚月梅Lane
逻辑回归理论基础
逻辑回归(Logistic Regression)是机器学习中经典的分类算法,虽然名称中带有"回归"二字,但它实际上是一种用于解决二分类问题的线性模型。下面我们将深入探讨其核心原理。
模型函数推导
逻辑回归模型基于Sigmoid函数构建,其数学表达式为:
其中:
- 是线性组合
- 表示特征维度
- 和 是需要学习的参数
Sigmoid函数将线性输出映射到(0,1)区间,可以解释为样本属于类别的概率。
最大似然估计与损失函数
逻辑回归采用最大似然法进行参数估计。对于N个样本的训练集,似然函数为:
取负对数后得到交叉熵损失函数:
这个损失函数具有良好的数学性质:
- 当预测值与真实值差距大时,梯度也大,参数更新快
- 是凸函数,能保证梯度下降找到全局最优解
梯度下降算法推导
通过求导可以得到参数的更新规则:
其中是学习率。这个更新规则形式简洁,计算高效,适合大规模数据。
为什么选择交叉熵而非平方误差
初学者可能会疑惑为何不使用熟悉的平方误差作为损失函数,主要原因有二:
-
梯度特性差异:交叉熵在预测错误时提供更大的梯度,加速学习;而平方误差在预测严重错误时梯度反而很小,导致学习缓慢。
-
凸性保证:交叉熵损失是凸函数,保证能找到全局最优;平方误差会导致非凸的损失面,容易陷入局部最优。
下图直观展示了两种损失函数的差异:
交叉熵损失:陡峭→平缓
平方误差:平缓→更平缓→陡峭
Softmax回归:多分类扩展
当分类问题超过两类时,我们需要使用Softmax回归,它是逻辑回归在多分类问题上的推广。
Softmax函数定义
Softmax函数将K个实数映射为概率分布:
其中是第i类的得分。Softmax确保:
- 所有输出在(0,1)区间
- 所有输出之和为1
交叉熵损失函数
多分类问题中使用类别交叉熵:
其中是真实标签的one-hot编码,是预测概率。
梯度推导
Softmax的梯度计算较为复杂,但推导后可以得到简洁的表达式:
这与二分类逻辑回归的梯度形式高度一致,体现了算法的一致性。
代码实现要点
在实际实现时需要注意:
-
数值稳定性:计算指数时可能溢出,通常实现时会减去最大值:
exp_scores = np.exp(z - np.max(z, axis=1, keepdims=True)) -
正则化:通常加入L2正则项防止过拟合:
reg_loss = 0.5 * reg * np.sum(W * W) -
批量处理:使用矩阵运算加速计算,避免循环。
应用场景对比
- 逻辑回归:二分类问题,如垃圾邮件识别、疾病诊断
- Softmax回归:多类别互斥分类,如手写数字识别、图像分类
理解这两种算法的原理和实现细节,是掌握分类问题的基础,也为学习更复杂的神经网络模型奠定了重要基础。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869