LMFlow项目中的医疗领域任务调优技术解析
医疗领域任务调优的数据使用策略
在LMFlow项目中,研究人员采用了PubMedQA和MedMCQA数据集的训练集来进行LLaMA系列模型的LoRA训练。这种训练方式充分利用了医疗领域专业数据集的特点,能够有效提升模型在特定医疗任务上的表现。值得注意的是,测试阶段不仅使用了PubMedQA和MedMCQA的验证/测试集进行领域内评估,还采用了MedQA-USMLE数据集进行跨领域测试,这种评估方式能够全面检验模型的泛化能力。
关于模型规模,LLaMA-1版本确实提供了30B参数规模的模型,但需要向Meta提交申请才能获取权重。而LLaMA-2版本目前尚未发布30B规模的检查点,仅提供了code-llama-30B版本。
持续预训练与参数高效微调技术
LMFlow项目中的任务调优本质上是一种持续预训练过程。由于PubMedQA和MedMCQA数据集没有包含多样化的指令,这种训练更接近于领域适应性预训练而非指令微调。项目采用了LoRA(Low-Rank Adaptation)技术进行参数高效微调,而非全参数微调。
LoRA技术在数据规模适中(如小于10亿token)的情况下表现良好,能够显著降低计算资源需求。虽然相比全参数微调可能存在一定性能差距,但在大多数实际应用场景中,这种差距是可以接受的,特别是在考虑计算成本的情况下。
领域适应中的灾难性遗忘问题及解决方案
在医疗领域模型调优过程中,确实会出现灾难性遗忘问题,即模型在获得医疗专业知识的同时,可能丧失部分通用能力。针对这一问题,研究人员提出了几种解决方案:
-
数据回放技术:通过在训练数据中加入通用领域数据(如约10亿token规模的通用语料)来保持模型的通用能力。这种方法需要精心设计数据混合比例和采样策略。
-
模型平均技术:这是一种更为简便的解决方案,将调优后的模型与原始基础模型进行参数平均。这种方法避免了复杂的数据工程,同时能有效缓解遗忘问题。相关技术可以参考"Model soups"和"Mitigating the Alignment Tax of RLHF"等研究工作。
对于希望构建医疗领域专用模型的研究者,建议根据实际需求和资源情况选择合适的解决方案。数据回放适合有充足计算资源和数据管理能力的团队,而模型平均则更适合资源有限但需要快速部署的场景。
在实际应用中,还需要注意评估模型在目标任务和通用任务上的平衡表现,通过适当的验证策略确保模型既具备专业能力又保持必要的通用性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0111
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00