LMFlow项目中的医疗领域任务调优技术解析
医疗领域任务调优的数据使用策略
在LMFlow项目中,研究人员采用了PubMedQA和MedMCQA数据集的训练集来进行LLaMA系列模型的LoRA训练。这种训练方式充分利用了医疗领域专业数据集的特点,能够有效提升模型在特定医疗任务上的表现。值得注意的是,测试阶段不仅使用了PubMedQA和MedMCQA的验证/测试集进行领域内评估,还采用了MedQA-USMLE数据集进行跨领域测试,这种评估方式能够全面检验模型的泛化能力。
关于模型规模,LLaMA-1版本确实提供了30B参数规模的模型,但需要向Meta提交申请才能获取权重。而LLaMA-2版本目前尚未发布30B规模的检查点,仅提供了code-llama-30B版本。
持续预训练与参数高效微调技术
LMFlow项目中的任务调优本质上是一种持续预训练过程。由于PubMedQA和MedMCQA数据集没有包含多样化的指令,这种训练更接近于领域适应性预训练而非指令微调。项目采用了LoRA(Low-Rank Adaptation)技术进行参数高效微调,而非全参数微调。
LoRA技术在数据规模适中(如小于10亿token)的情况下表现良好,能够显著降低计算资源需求。虽然相比全参数微调可能存在一定性能差距,但在大多数实际应用场景中,这种差距是可以接受的,特别是在考虑计算成本的情况下。
领域适应中的灾难性遗忘问题及解决方案
在医疗领域模型调优过程中,确实会出现灾难性遗忘问题,即模型在获得医疗专业知识的同时,可能丧失部分通用能力。针对这一问题,研究人员提出了几种解决方案:
-
数据回放技术:通过在训练数据中加入通用领域数据(如约10亿token规模的通用语料)来保持模型的通用能力。这种方法需要精心设计数据混合比例和采样策略。
-
模型平均技术:这是一种更为简便的解决方案,将调优后的模型与原始基础模型进行参数平均。这种方法避免了复杂的数据工程,同时能有效缓解遗忘问题。相关技术可以参考"Model soups"和"Mitigating the Alignment Tax of RLHF"等研究工作。
对于希望构建医疗领域专用模型的研究者,建议根据实际需求和资源情况选择合适的解决方案。数据回放适合有充足计算资源和数据管理能力的团队,而模型平均则更适合资源有限但需要快速部署的场景。
在实际应用中,还需要注意评估模型在目标任务和通用任务上的平衡表现,通过适当的验证策略确保模型既具备专业能力又保持必要的通用性。
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript039RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统Vue0417arkanalyzer
方舟分析器:面向ArkTS语言的静态程序分析框架TypeScript041GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。03PowerWechat
PowerWechat是一款基于WeChat SDK for Golang,支持小程序、微信支付、企业微信、公众号等全微信生态Go00openGauss-server
openGauss kernel ~ openGauss is an open source relational database management systemC++0146
热门内容推荐
最新内容推荐
项目优选









