nnUNet中的类别不平衡处理与采样策略解析
2025-06-02 18:39:00作者:裘旻烁
在医学图像分割领域,nnUNet作为当前最先进的解决方案之一,其内部采用的采样策略对于处理类别不平衡问题至关重要。本文将深入剖析nnUNet的采样机制,特别是其如何通过精心设计的策略来应对医学图像中常见的类别分布不均问题。
nnUNet的默认采样机制
nnUNet采用了一种两阶段采样策略来处理类别不平衡:
-
训练案例选择阶段:系统会随机选择一个训练案例,不考虑该案例中包含哪些类别。这种选择是完全随机的,不会因为某些案例包含特定类别而提高其被选中的概率。
-
图像块采样阶段:从选定的训练案例中,系统会以2:1的比例混合两种采样方式:
- 66.7%的概率:从案例中随机位置采样一个图像块
- 33.3%的概率:保证采样的图像块至少包含一个前景类别(从该案例中随机选择一个非背景类别,然后在该类别区域内随机选取一个像素作为中心点)
这种设计基于一个重要假设:大多数类别会出现在大多数训练案例中。对于常规医学图像分割任务,这种假设通常是成立的。
特殊场景下的潜在问题
当遇到以下特殊情况时,默认采样策略可能表现不佳:
-
大量"空"标注案例:数据集中包含大量完全没有前景像素的案例(如健康对照组的扫描图像)
-
极端类别不平衡:某些类别只出现在极少数案例中,而大多数案例不包含这些稀有类别
在这些情况下,稀有类别可能无法得到充分学习,因为:
- 选择包含这些类别的案例概率本身就低
- 即使选中了相关案例,也可能因为随机采样而错过稀有类别区域
改进方案探讨
针对上述问题,可以考虑以下几种改进方案:
方案一:基于类别统计的案例重加权
- 预处理阶段计算每个案例的类别分布
- 根据类别出现频率调整案例选择概率
- 实现方式:
- 遍历所有标注文件,统计每个案例的类别分布
- 使用类似scikit-learn的类别权重计算方法调整采样概率
方案二:分层采样策略
更稳健的改进方案是改变采样顺序:
- 首先随机选择一个目标类别
- 然后选择包含该类别的一个案例
- 最后从该案例中随机采样包含目标类别的区域
这种策略的优势在于:
- 确保每个类别都能被平等对待
- 避免某些案例因包含大量某类别而主导训练
- 更稳定地处理极端不平衡情况
实际应用建议
对于当前版本的nnUNet用户,如果遇到类别极度不平衡的情况,可以考虑:
- 手动实现自定义DataLoader
- 修改采样概率计算逻辑
- 重点关注
nnUNetDataLoader2D
和nnUNetDataLoader3D
中的sampling_probabilities
参数
未来版本可能会内置更智能的采样策略,但当前用户可以通过上述方法自行调整以适应特殊数据集需求。
理解这些采样机制的内在原理,有助于研究人员更好地应用nnUNet解决实际医学图像分割问题,特别是在处理不平衡数据集时做出明智的调整决策。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++045Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
165
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
408
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
14
1