nnUNet中的类别不平衡处理与采样策略解析
2025-06-02 20:44:43作者:裘旻烁
在医学图像分割领域,nnUNet作为当前最先进的解决方案之一,其内部采用的采样策略对于处理类别不平衡问题至关重要。本文将深入剖析nnUNet的采样机制,特别是其如何通过精心设计的策略来应对医学图像中常见的类别分布不均问题。
nnUNet的默认采样机制
nnUNet采用了一种两阶段采样策略来处理类别不平衡:
-
训练案例选择阶段:系统会随机选择一个训练案例,不考虑该案例中包含哪些类别。这种选择是完全随机的,不会因为某些案例包含特定类别而提高其被选中的概率。
-
图像块采样阶段:从选定的训练案例中,系统会以2:1的比例混合两种采样方式:
- 66.7%的概率:从案例中随机位置采样一个图像块
- 33.3%的概率:保证采样的图像块至少包含一个前景类别(从该案例中随机选择一个非背景类别,然后在该类别区域内随机选取一个像素作为中心点)
这种设计基于一个重要假设:大多数类别会出现在大多数训练案例中。对于常规医学图像分割任务,这种假设通常是成立的。
特殊场景下的潜在问题
当遇到以下特殊情况时,默认采样策略可能表现不佳:
-
大量"空"标注案例:数据集中包含大量完全没有前景像素的案例(如健康对照组的扫描图像)
-
极端类别不平衡:某些类别只出现在极少数案例中,而大多数案例不包含这些稀有类别
在这些情况下,稀有类别可能无法得到充分学习,因为:
- 选择包含这些类别的案例概率本身就低
- 即使选中了相关案例,也可能因为随机采样而错过稀有类别区域
改进方案探讨
针对上述问题,可以考虑以下几种改进方案:
方案一:基于类别统计的案例重加权
- 预处理阶段计算每个案例的类别分布
- 根据类别出现频率调整案例选择概率
- 实现方式:
- 遍历所有标注文件,统计每个案例的类别分布
- 使用类似scikit-learn的类别权重计算方法调整采样概率
方案二:分层采样策略
更稳健的改进方案是改变采样顺序:
- 首先随机选择一个目标类别
- 然后选择包含该类别的一个案例
- 最后从该案例中随机采样包含目标类别的区域
这种策略的优势在于:
- 确保每个类别都能被平等对待
- 避免某些案例因包含大量某类别而主导训练
- 更稳定地处理极端不平衡情况
实际应用建议
对于当前版本的nnUNet用户,如果遇到类别极度不平衡的情况,可以考虑:
- 手动实现自定义DataLoader
- 修改采样概率计算逻辑
- 重点关注
nnUNetDataLoader2D和nnUNetDataLoader3D中的sampling_probabilities参数
未来版本可能会内置更智能的采样策略,但当前用户可以通过上述方法自行调整以适应特殊数据集需求。
理解这些采样机制的内在原理,有助于研究人员更好地应用nnUNet解决实际医学图像分割问题,特别是在处理不平衡数据集时做出明智的调整决策。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PANTONE潘通AI色板库:设计师必备的色彩管理利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
126
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70