Sentry JavaScript SDK 9.9.0版本发布:浏览器日志与链路追踪增强
Sentry是一个开源的应用程序监控平台,专注于错误跟踪和性能监控。其JavaScript SDK为前端和后端JavaScript应用提供了强大的错误捕获和性能分析能力。最新发布的9.9.0版本带来了多项重要改进,特别是在浏览器日志记录和分布式追踪方面。
核心功能增强
浏览器日志记录支持
9.9.0版本为浏览器端引入了全新的日志记录API,开发者现在可以通过Sentry.logger
方法直接记录结构化日志:
Sentry.init({
dsn: 'your-dsn-here',
_experiments: {
enableLogs: true, // 必须启用实验性功能才能使用日志
},
});
// 记录不同级别的日志
Sentry.logger.info('用户登录成功', { userId: 123 });
Sentry.logger.warn('API响应缓慢', { endpoint: '/api/data' });
Sentry.logger.error('数据加载失败', { error: err });
这一功能为即将推出的Sentry日志产品奠定了基础,使开发者能够统一管理应用的错误、性能指标和日志数据。
分布式追踪改进
在分布式追踪方面,新版本增加了跨trace的链路连接功能。当一个新的trace开始时,SDK会自动创建与之前trace的关联:
Sentry.init({
integrations: [
Sentry.browserTracingIntegration({
linkPreviousTrace: 'in-memory', // 可选: 'in-memory'(默认)|'session-storage'|'off'
}),
],
});
这一改进使得在复杂的单页应用(SPA)中,用户跨页面或长时间会话的完整旅程能够被更好地追踪和分析。
Next.js集成优化
针对Next.js框架,9.9.0版本提前支持了即将发布的instrumentation-client.ts
特性。开发者现在可以将原有的sentry.client.config.ts
迁移到这个新文件中,或者将配置内容合并到现有的instrumentation-client.ts
中。
这一变化确保了SDK与Next.js未来版本的兼容性,同时也为开发者提供了更灵活的客户端配置方式。
性能优化
9.9.0版本对核心功能进行了多项性能优化:
- 优化了
dropUndefinedKeys
方法的执行效率,减少了不必要的对象遍历 - 移除了NestJS集成中非可枚举属性的使用,提升了框架兼容性
- 改进了Nuxt.js集成,移除了不必要的Nitro 'close'钩子
这些优化使得SDK在运行时更加高效,特别是在高频监控场景下能够减少对应用性能的影响。
错误处理增强
新版本对浏览器中的"Failed to fetch"错误进行了增强处理,现在会自动附加请求的主机信息到错误消息中。这使得在Sentry面板中能够更直观地识别出问题的网络请求来源。
对于Node.js环境,Fastify框架现在支持自定义的shouldHandleError
回调,开发者可以更灵活地控制哪些错误需要被捕获和上报。
总结
Sentry JavaScript SDK 9.9.0版本通过引入日志记录API、增强分布式追踪能力、优化框架集成和提升性能,为开发者提供了更全面的应用监控解决方案。特别是浏览器日志功能的加入,标志着Sentry正在向更完整的可观测性平台演进。对于使用Next.js、Nuxt.js等现代前端框架的团队,这一版本提供了更好的兼容性和更优的性能表现。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0266cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









