OpenIMServer 优化定时任务处理性能的技术实践
背景
在 OpenIMServer 3.8.2 版本中,我们发现当 conversation 集合中文档数量较多时,定时任务处理消息销毁的效率会显著下降。这主要是因为当前实现采用了传统的分页查询方式,随着数据量的增长,MongoDB 的 skip 操作会导致性能急剧恶化。
问题分析
通过 MongoDB 慢查询日志分析,我们发现当前实现存在两个主要性能瓶颈:
-
skip 操作的低效性:当前代码每次只处理 100 条数据,当需要处理靠后的数据时,skip 值会变得很大,导致 MongoDB 需要扫描大量文档才能定位到目标数据。
-
小批量处理的开销:每次仅处理少量数据,导致需要多次查询才能完成全部数据的处理,增加了网络和查询解析的开销。
优化方案
我们提出了以下优化措施:
1. 使用游标式分页替代 skip
传统的分页方式:
pagination := &sdkws.RequestPagination{
PageNumber: pageNumber,
ShowNumber: batchNum,
}
优化后的游标式分页:
pagination := &sdkws.RequestPagination{
PageNumber: 0,
ShowNumber: batchNum,
}
filter := bson.M{"conversation_id": bson.M{"$gt": lastID}}
这种基于字段值的分页方式利用了索引的有序性,避免了 skip 操作带来的性能问题。
2. 增大批量处理大小
将每次处理的批量大小从 100 增加到 200,减少了总的查询次数。经过测试,这个值在大多数场景下能提供较好的平衡:
const batchNum = 200
3. 实现细节优化
优化后的核心逻辑流程:
- 首先获取总对话数,计算需要处理的批次
- 使用游标式分页按批次获取对话ID
- 批量查询对话详情
- 筛选出需要销毁消息的对话
- 记录最后处理的对话ID作为下一批次的起点
实现代码
关键实现代码如下:
func (c *conversationServer) GetConversationsNeedDestructMsgs(ctx context.Context, _ *pbconversation.GetConversationsNeedDestructMsgsReq) (*pbconversation.GetConversationsNeedDestructMsgsResp, error) {
// 获取总数并计算批次
num, _ := c.conversationDatabase.GetAllConversationIDsNumber(ctx)
const batchNum = 200
maxPage := (num + batchNum - 1) / batchNum
var temp []*model.Conversation
var curConversationID string
for pageNumber := 0; pageNumber < int(maxPage); pageNumber++ {
// 使用游标式分页
conversationIDs, _ := c.conversationDatabase.GetConversationIDsGtID(ctx, curConversationID, &sdkws.RequestPagination{
PageNumber: 0,
ShowNumber: batchNum,
})
if len(conversationIDs) == 0 {
break
}
// 批量查询对话详情
conversations, _ := c.conversationDatabase.GetConversationsByConversationID(ctx, conversationIDs)
for _, conv := range conversations {
if conv.IsMsgDestruct && /* 其他条件 */ {
temp = append(temp, conv)
}
curConversationID = conv.ConversationID
}
}
return &pbconversation.GetConversationsNeedDestructMsgsResp{
Conversations: convert.ConversationsDB2Pb(temp),
}, nil
}
性能对比
优化前后的性能对比:
| 指标 | 优化前 | 优化后 |
|---|---|---|
| 查询时间 | 随skip值线性增长 | 稳定在较低水平 |
| 内存使用 | 较低 | 略高(因批量增大) |
| 网络开销 | 较高(多次查询) | 较低 |
| MongoDB负载 | 高(全表扫描) | 低(索引扫描) |
注意事项
-
批量大小的选择:200是一个经验值,实际应用中应根据数据特点和服务器配置进行调整。过大的批量可能导致内存压力,过小则无法充分发挥优化效果。
-
排序字段的选择:必须选择有索引且唯一的字段作为游标字段,本例中使用的是 conversation_id。
-
边界条件处理:需要妥善处理最后一页数据以及空结果集的情况。
-
错误处理:虽然示例中简化了错误处理,实际应用中应保持适当的错误处理逻辑。
总结
通过这次优化,我们解决了 OpenIMServer 中定时任务处理大量对话数据时的性能瓶颈。关键点在于:
- 避免使用 skip 进行分页,转而使用基于字段值的游标式分页
- 适当增大批量处理大小,减少查询次数
- 保持代码的清晰性和可维护性
这种优化思路不仅适用于消息销毁场景,也可以推广到其他需要处理大量数据的定时任务中。在实际应用中,建议结合具体业务场景和数据特点进行参数调优,以达到最佳性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-Thinking暂无简介Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00