LegendState项目中的useComputed依赖项优化与演进
背景介绍
在LegendState状态管理库的v3版本开发过程中,开发者们对useComputed钩子函数的依赖项(deps)参数位置进行了深入讨论。这一讨论不仅涉及API设计的最佳实践,还触及了React生态中的一些核心概念和性能优化策略。
问题起源
在React生态中,钩子函数的依赖项数组是一个常见模式,如useEffect、useMemo等。React官方推荐的ESLint规则会自动检测并填充这些依赖项。在LegendState的早期版本中,useComputed的依赖项参数位置与React社区的习惯不一致,这导致了一些开发体验上的不便。
开发者lishine提出了一个关键观点:依赖项参数应该紧跟在计算函数之后,而不是放在最后。这种设计更符合React生态的惯例,能够更好地与ESLint规则配合工作。
技术实现方案
lishine提供了自己的解决方案,通过类型重载和参数重新排序来优化API设计:
export function useComputed<T>(compute: () => T | Promise<T>, deps: DependencyList): Observable<T>
export function useComputed<T, T2 = T>(
compute: (() => T | Promise<T>) | ObservableParam<T>,
set: (value: T2) => void
): Observable<T>
export function useComputed<T, T2 = T>(
compute: (() => T | Promise<T>) | ObservableParam<T>,
deps: DependencyList,
set: (value: T2) => void
): Observable<T>
export function useComputed(param1: any, param2: any, param3?: any) {
return legendUseComputed(param1, param3, param2)
}
这种实现保持了向后兼容性,同时提供了更符合React开发习惯的API。
更深层次的讨论
项目维护者jmeistrich提出了更根本的思考:计划在v3版本中弃用useComputed和computed概念,转而统一使用observable。这一决策基于几个重要考量:
- API简化:减少核心概念数量,降低学习曲线
- 性能优化:避免在依赖项变化时创建新的observable,而是刷新现有observable
- 概念统一:observable现在可以像computed一样工作,只需传入函数
依赖项处理的创新方案
jmeistrich实现了一种创新的依赖项处理方式:将依赖项数组放入一个observable中,当依赖项变化时刷新已创建的observable,而不是创建新实例。这种方法解决了两个关键问题:
- 稳定性:保持observable引用不变,避免订阅中断
- 性能:减少不必要的实例创建和垃圾回收
实际应用案例
开发者们还讨论了参数化computed的高级用法,即根据参数动态创建observable。这种模式在需要缓存多个计算结果的场景非常有用。v3版本通过"查找表"(lookup table)特性原生支持了这种模式:
const o$ = observable({ a: 1, b: 2 } as Record<string, number>);
const c$$ = useObservable((p: string) => o$[p].get())
依赖项比较的优化
在实现过程中,开发者们发现LegendState对依赖项的比较采用了深度值比较而非引用比较。这一特性值得注意:
- 当设置observable值为数组/对象时,会递归比较原始值,忽略引用变化
- 但对于computed返回值,只进行浅比较,引用变化会被视为值变化
这种差异化的比较策略在性能与正确性之间取得了良好平衡。
总结与展望
LegendState v3版本在useComputed和相关API上的演进体现了几个重要趋势:
- API设计更加符合React生态惯例,降低开发者认知负担
- 概念精简,通过observable统一多种功能
- 性能优化,创新的依赖项处理机制
- 类型安全,完善的TypeScript支持
这些改进使LegendState在状态管理领域更具竞争力,为开发者提供了更强大、更易用的工具。未来,随着更多开发者采用和实践,这些API设计可能会进一步演进,持续优化开发体验和运行时性能。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00