LegendState项目中的useComputed依赖项优化与演进
背景介绍
在LegendState状态管理库的v3版本开发过程中,开发者们对useComputed钩子函数的依赖项(deps)参数位置进行了深入讨论。这一讨论不仅涉及API设计的最佳实践,还触及了React生态中的一些核心概念和性能优化策略。
问题起源
在React生态中,钩子函数的依赖项数组是一个常见模式,如useEffect、useMemo等。React官方推荐的ESLint规则会自动检测并填充这些依赖项。在LegendState的早期版本中,useComputed的依赖项参数位置与React社区的习惯不一致,这导致了一些开发体验上的不便。
开发者lishine提出了一个关键观点:依赖项参数应该紧跟在计算函数之后,而不是放在最后。这种设计更符合React生态的惯例,能够更好地与ESLint规则配合工作。
技术实现方案
lishine提供了自己的解决方案,通过类型重载和参数重新排序来优化API设计:
export function useComputed<T>(compute: () => T | Promise<T>, deps: DependencyList): Observable<T>
export function useComputed<T, T2 = T>(
compute: (() => T | Promise<T>) | ObservableParam<T>,
set: (value: T2) => void
): Observable<T>
export function useComputed<T, T2 = T>(
compute: (() => T | Promise<T>) | ObservableParam<T>,
deps: DependencyList,
set: (value: T2) => void
): Observable<T>
export function useComputed(param1: any, param2: any, param3?: any) {
return legendUseComputed(param1, param3, param2)
}
这种实现保持了向后兼容性,同时提供了更符合React开发习惯的API。
更深层次的讨论
项目维护者jmeistrich提出了更根本的思考:计划在v3版本中弃用useComputed和computed概念,转而统一使用observable。这一决策基于几个重要考量:
- API简化:减少核心概念数量,降低学习曲线
- 性能优化:避免在依赖项变化时创建新的observable,而是刷新现有observable
- 概念统一:observable现在可以像computed一样工作,只需传入函数
依赖项处理的创新方案
jmeistrich实现了一种创新的依赖项处理方式:将依赖项数组放入一个observable中,当依赖项变化时刷新已创建的observable,而不是创建新实例。这种方法解决了两个关键问题:
- 稳定性:保持observable引用不变,避免订阅中断
- 性能:减少不必要的实例创建和垃圾回收
实际应用案例
开发者们还讨论了参数化computed的高级用法,即根据参数动态创建observable。这种模式在需要缓存多个计算结果的场景非常有用。v3版本通过"查找表"(lookup table)特性原生支持了这种模式:
const o$ = observable({ a: 1, b: 2 } as Record<string, number>);
const c$$ = useObservable((p: string) => o$[p].get())
依赖项比较的优化
在实现过程中,开发者们发现LegendState对依赖项的比较采用了深度值比较而非引用比较。这一特性值得注意:
- 当设置observable值为数组/对象时,会递归比较原始值,忽略引用变化
- 但对于computed返回值,只进行浅比较,引用变化会被视为值变化
这种差异化的比较策略在性能与正确性之间取得了良好平衡。
总结与展望
LegendState v3版本在useComputed和相关API上的演进体现了几个重要趋势:
- API设计更加符合React生态惯例,降低开发者认知负担
- 概念精简,通过observable统一多种功能
- 性能优化,创新的依赖项处理机制
- 类型安全,完善的TypeScript支持
这些改进使LegendState在状态管理领域更具竞争力,为开发者提供了更强大、更易用的工具。未来,随着更多开发者采用和实践,这些API设计可能会进一步演进,持续优化开发体验和运行时性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00