Data-Juicer 中的批处理操作优化:FusedOP 设计解析
2025-06-14 00:42:03作者:韦蓉瑛
背景与需求
在数据处理领域,特别是大规模数据集处理场景中,内存管理和处理效率一直是关键挑战。Data-Juicer 作为一个高效的数据处理工具,当前采用线性顺序处理模式,即对整个数据集依次应用一系列操作(OP1、OP2等)。这种方式虽然简单直接,但在处理超大规模数据时可能会遇到内存瓶颈和效率问题。
现有方案分析
当前 Data-Juicer 的执行流程可以表示为:
dataset.process([OP1, OP2])
这种设计存在几个潜在问题:
- 内存占用高:需要将整个数据集加载到内存中
- 灵活性不足:无法针对不同操作组设置不同的批处理策略
- 资源利用不均衡:无法根据操作特性调整批处理粒度
改进方案设计
我们提出引入 FusedOP 概念,实现批处理级别的操作组合。核心思想是将多个操作打包成一个逻辑单元,以指定批处理大小执行。这种设计带来以下优势:
- 内存优化:通过批处理减少单次内存占用
- 执行效率提升:更细粒度的资源控制
- 配置灵活性:支持在配置文件中直接定义批处理策略
技术实现上,我们设计了新的配置语法:
process:
- FusedOP:
- batch_size: 1
- clean_email_mapper:
- clean_links_mapper:
实现原理
FusedOP 的核心实现机制包括:
- 批处理迭代器:将数据集分割为指定大小的批次
- 操作组合:将多个操作打包为单一逻辑单元
- 执行引擎扩展:支持嵌套的操作执行流程
执行流程变为:
for data_batch in dataset.batch_iterator(batch_size):
data_batch.process([OP1, OP2])
应用场景
这种设计特别适合以下场景:
- 内存敏感型应用:处理超大规模数据集时减少内存峰值
- 操作密集型流程:当需要连续应用多个轻量级操作时
- 资源受限环境:在有限计算资源下实现更平稳的资源使用
技术优势
相比传统线性处理模式,FusedOP 设计带来多方面提升:
- 资源利用率优化:可根据操作特性调整批处理大小
- 处理流程可视化:通过配置明确展示操作分组关系
- 执行效率提升:减少数据加载和序列化开销
- 内存占用降低:避免全量数据同时驻留内存
总结与展望
Data-Juicer 中引入 FusedOP 设计是对现有数据处理流程的重要优化。它不仅解决了内存瓶颈问题,还提供了更灵活的操作组合方式。未来可进一步探索的方向包括:
- 动态批处理大小调整策略
- 基于操作特性的自动批处理优化
- 分布式环境下的批处理协同
这种设计模式为大规模数据处理提供了新的思路,值得在类似数据处理框架中推广借鉴。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0125
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
494
3.63 K
Ascend Extension for PyTorch
Python
300
337
暂无简介
Dart
743
179
React Native鸿蒙化仓库
JavaScript
297
346
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
474
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
300
125
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20
仓颉编程语言测试用例。
Cangjie
43
871