手势识别系统 - 无接触的未来,尽在掌握之中!
2024-05-21 02:39:48作者:苗圣禹Peter
项目简介
HAND GESTURE RECOGNITION 是一个基于Python 2.7和OpenCV 2.4.8的开源手部识别与手势识别项目。该项目通过一种独特的直方图方法,从背景图像中分离出手部,并通过轮廓和凸包检测来确定手指和手掌的位置,进而实现对特定手势的识别。这个创新的系统不仅有趣,而且具备实际应用潜力。
平台: Python 2.7
依赖库: OpenCV 2.4.8,Numpy
硬件需求: 摄像头/网络摄像头
技术解析
系统首先创建一个背景模型,当用户按下'b'键时,捕捉背景环境。然后,通过用户将手放在9个小框内(确保覆盖手部颜色范围)并按'c'键,生成手部直方图。完成设置后,程序进入无限循环,对每一帧图像进行处理:
- 应用背景模型生成掩模,移除背景。
- 将前景转换为HSV色域,进行直方图对比(回射投影),得到已识别的手部区域。
- 应用形态学和平滑处理,优化手部形状。
- 寻找二值图像的轮廓,找到最大轮廓并计算其凸包。
- 根据中心点和尺寸确定手掌位置,筛选出真正属于手的部分,移除多余的点。
- 利用手指和手掌的相对位置创建手势模型,并与预定义的 gestures API 进行匹配,从而识别出具体的手势。
应用场景
这个项目在多个领域具有广泛的应用价值:
- 人机交互:可用于智能家居控制,例如通过手势操作电视、空调等设备。
- 无障碍技术:帮助身体残疾人士通过手势与电脑或其他电子设备通信。
- 游戏设计:手势识别可以增强游戏的真实感和沉浸式体验。
- 教育和演示:教师或演讲者可以通过手势控制幻灯片,无需离开讲台。
项目特点
- 简单易用:只需几个按键即可完成设置和操作。
- 实时识别:系统能够在视频流中实时检测和识别手势。
- 自适应性强:能适应不同肤色和光照条件下的手部识别。
- 扩展性好:方便添加新的手势到现有的gestures API。
- 文档详尽:提供详细的文档和截图解释,便于理解和改进。
要了解更多关于本项目的详细信息和背后的实现原理,请参阅 docs/Documentation.pdf 文件。如有任何问题,欢迎联系:mahaveer.verma1@gmail.com
现在,是时候尝试一下这款强大的手势识别工具,让你的手势成为命令,开启你的无触控新生活吧!只需运行 HandRecognition.py,即可启动你的手势探索之旅。享受这个未来科技带来的乐趣!
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
212
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319