OpenSearch项目中的Lucene 10索引性能问题分析与解决
2025-05-22 18:45:25作者:董斯意
在OpenSearch项目从2.19版本升级到3.0版本的过程中,开发团队发现了一个与Lucene 10索引相关的性能问题。具体表现为在使用Big5工作负载时,composite_terms-keyword操作的延迟增加了10-15%。本文将详细分析这一问题及其解决方案。
问题背景
OpenSearch 3.0版本引入了Lucene 10作为其底层索引引擎。在性能测试中,团队发现composite_terms-keyword操作的延迟明显增加。有趣的是,当使用OpenSearch 2.19创建的索引但在OpenSearch 3.0服务器上执行搜索时,性能表现反而更好,这提示问题可能出在索引格式或Lucene 10升级的配置上。
初步分析
开发团队首先进行了基准测试,收集了不同配置下的性能数据:
- OpenSearch 2.19版本:50th百分位延迟385.519ms
- OpenSearch 3.0版本:50th百分位延迟437.748ms
- OpenSearch 3.0服务器+2.19索引:50th百分位延迟363.538ms
这些数据清楚地表明,问题与索引格式有关,而非搜索服务器本身。
深入调查
团队随后进行了更深入的调查,重点关注以下几个方面:
- 段合并策略:初步怀疑可能与合并策略或段拓扑结构有关
- 段数量差异:发现2.19版本默认产生18个段,而3.0版本产生22个段
- 强制合并测试:将段数量统一为10个后,3.0版本的性能表现与2.19版本相当甚至更好
关键发现
通过多次测试,团队得出以下重要结论:
- 段数量影响:
composite_terms-keyword查询的延迟与段数量直接相关 - 段大小分布:观察到段大小存在不均匀现象,某些段变得异常大(达到23GB)
- 最优性能:当强制合并为1个段时,3.0版本(约240ms)反而比2.19版本(约255ms)表现更好
问题本质
最终确定问题并非真正的性能回归,而是由于段拓扑结构的自然变化导致的性能波动。在相同段数量的情况下,两个版本的性能差异在合理范围内。当优化段结构后,3.0版本甚至展现出更好的性能潜力。
解决方案与建议
基于这些发现,团队建议:
- 对于性能敏感的
composite_terms-keyword查询,应考虑适当的段合并策略 - 在生产环境中,可以通过
force_mergeAPI优化段结构 - 性能测试时应控制段数量变量,以获得更准确的比较结果
- 理解Lucene 10在段管理上的行为变化,适当调整索引配置
结论
这次性能问题的调查展示了OpenSearch团队对性能优化的严谨态度。通过系统的测试和分析,不仅解决了表面的性能问题,还深入理解了Lucene 10在段管理方面的行为变化。这为后续版本的性能优化提供了宝贵经验,也提醒我们在升级过程中需要全面考虑索引结构对查询性能的影响。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C032
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
427
3.28 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
340
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
233
266
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
668
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
45
32