EntityFramework-Plus 缓存机制与 EF8 中 OpenJson 转换的兼容性问题解析
问题背景
在 EntityFramework-Plus 项目中,FromCache 是一个强大的缓存功能,它允许开发者轻松地将查询结果缓存起来以提高性能。然而,随着 EF Core 8 的发布,一个潜在的兼容性问题浮出水面。
核心问题
EF Core 8 对 Contains 操作符的 SQL 生成方式进行了重大改变。在 EF Core 7 及以下版本中,类似 list.Contains(column) 的查询会被转换为传统的 IN 子句:
SELECT [e].[Code]
FROM [Tbl] AS [e]
WHERE [e].[Id] IN (1, 2)
而在 EF Core 8 中,同样的查询会被转换为使用 OPENJSON 函数:
SELECT [e].[Code]
FROM [Tbl] AS [e]
WHERE [e].[Id] IN (
SELECT [i].[value]
FROM OPENJSON(@__input_0) WITH ([value] int '$') AS [i]
)
问题表现
当使用 EntityFramework-Plus 的 FromCache 功能时,如果缓存了一个基于 Contains 操作的查询(如 listA.Contains(x)),然后尝试使用不同的列表(如 listB.Contains(x))执行相同查询,缓存系统无法正确识别参数变化,导致返回错误的缓存结果。
技术原理分析
问题的根源在于 EntityFramework-Plus 的缓存键生成机制。在 EF Core 8 之前,缓存系统能够正确识别 IN 子句中参数列表的变化。但当 EF Core 8 改用 OPENJSON 方式后:
- 参数被封装为 JSON 格式传递
- 缓存键生成逻辑未能完全适应这种新的参数传递方式
- 导致不同参数列表被错误地识别为相同查询
临时解决方案
开发者可以通过在 DbContext 配置中添加 UseCompatibilityLevel(120) 来强制 EF Core 8 使用旧的 SQL 生成方式:
optionsBuilder.UseSqlServer(connectionString,
options => options.UseCompatibilityLevel(120));
这会使得 EF Core 8 回退到生成传统的 IN 子句,从而绕过 OPENJSON 带来的缓存问题。
官方修复方案
EntityFramework-Plus 团队已经意识到这个问题并在最新版本(8.102.1.0)中提供了修复方案。新版本改进了缓存键生成逻辑,能够正确识别 OPENJSON 格式的参数变化。
最佳实践建议
- 对于使用 EF Core 8 的项目,建议升级到 EntityFramework-Plus 8.102.1.0 或更高版本
- 如果暂时无法升级,可以使用兼容性级别回退方案
- 在性能敏感场景中,建议对新旧两种方案进行基准测试,选择最适合的方案
- 注意监控缓存命中率和正确性,特别是在参数变化频繁的场景
总结
EntityFramework-Plus 与 EF Core 8 的这次兼容性问题展示了 ORM 框架演进过程中可能遇到的挑战。通过理解底层机制和保持组件更新,开发者可以确保应用程序的稳定性和性能。这次修复也体现了 EntityFramework-Plus 项目对新技术快速适配的能力。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00