EntityFramework-Plus 缓存机制与 EF8 中 OpenJson 转换的兼容性问题解析
问题背景
在 EntityFramework-Plus 项目中,FromCache 是一个强大的缓存功能,它允许开发者轻松地将查询结果缓存起来以提高性能。然而,随着 EF Core 8 的发布,一个潜在的兼容性问题浮出水面。
核心问题
EF Core 8 对 Contains 操作符的 SQL 生成方式进行了重大改变。在 EF Core 7 及以下版本中,类似 list.Contains(column) 的查询会被转换为传统的 IN 子句:
SELECT [e].[Code]
FROM [Tbl] AS [e]
WHERE [e].[Id] IN (1, 2)
而在 EF Core 8 中,同样的查询会被转换为使用 OPENJSON 函数:
SELECT [e].[Code]
FROM [Tbl] AS [e]
WHERE [e].[Id] IN (
SELECT [i].[value]
FROM OPENJSON(@__input_0) WITH ([value] int '$') AS [i]
)
问题表现
当使用 EntityFramework-Plus 的 FromCache 功能时,如果缓存了一个基于 Contains 操作的查询(如 listA.Contains(x)),然后尝试使用不同的列表(如 listB.Contains(x))执行相同查询,缓存系统无法正确识别参数变化,导致返回错误的缓存结果。
技术原理分析
问题的根源在于 EntityFramework-Plus 的缓存键生成机制。在 EF Core 8 之前,缓存系统能够正确识别 IN 子句中参数列表的变化。但当 EF Core 8 改用 OPENJSON 方式后:
- 参数被封装为 JSON 格式传递
- 缓存键生成逻辑未能完全适应这种新的参数传递方式
- 导致不同参数列表被错误地识别为相同查询
临时解决方案
开发者可以通过在 DbContext 配置中添加 UseCompatibilityLevel(120) 来强制 EF Core 8 使用旧的 SQL 生成方式:
optionsBuilder.UseSqlServer(connectionString,
options => options.UseCompatibilityLevel(120));
这会使得 EF Core 8 回退到生成传统的 IN 子句,从而绕过 OPENJSON 带来的缓存问题。
官方修复方案
EntityFramework-Plus 团队已经意识到这个问题并在最新版本(8.102.1.0)中提供了修复方案。新版本改进了缓存键生成逻辑,能够正确识别 OPENJSON 格式的参数变化。
最佳实践建议
- 对于使用 EF Core 8 的项目,建议升级到 EntityFramework-Plus 8.102.1.0 或更高版本
- 如果暂时无法升级,可以使用兼容性级别回退方案
- 在性能敏感场景中,建议对新旧两种方案进行基准测试,选择最适合的方案
- 注意监控缓存命中率和正确性,特别是在参数变化频繁的场景
总结
EntityFramework-Plus 与 EF Core 8 的这次兼容性问题展示了 ORM 框架演进过程中可能遇到的挑战。通过理解底层机制和保持组件更新,开发者可以确保应用程序的稳定性和性能。这次修复也体现了 EntityFramework-Plus 项目对新技术快速适配的能力。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00