Lettuce Core 6.7.0发布:Redis向量搜索与连接池增强
Lettuce是一个高性能的Java Redis客户端,它基于Netty构建,提供了异步、同步和响应式API,支持Redis的所有功能。作为Redis官方推荐的Java客户端之一,Lettuce以其高性能、线程安全和丰富的功能集著称。
Redis向量搜索支持
Lettuce 6.7.0最重要的新特性是全面支持Redis 8.0引入的向量集合(Vector Sets)数据类型。向量集合是Redis为向量相似性搜索设计的新型数据结构,它允许开发者直接在Redis中存储和查询向量数据,特别适合构建推荐系统、语义搜索和图像识别等AI应用。
新版本中,Lettuce添加了完整的向量集合命令支持,包括:
VADD- 向向量集合中添加向量VQUERY- 查询向量集合中最相似的向量VRANGE- 获取向量集合的范围VDEL- 删除向量集合中的向量
这些API既提供了同步调用方式,也支持异步和响应式编程模型,开发者可以根据应用场景选择最适合的编程范式。
连接池验证增强
连接池是数据库客户端的关键组件,Lettuce 6.7.0对ConnectionPoolSupport进行了重要增强,新增了自定义连接验证功能。在实际生产环境中,数据库连接可能会因为各种原因失效(如网络中断、服务器重启等),传统的连接池往往只能提供基本的存活检查。
新版本允许开发者注入自定义验证逻辑,例如:
- 检查连接是否处于事务状态
- 验证连接是否具有特定权限
- 执行自定义健康检查命令
这种灵活性使得连接池能够更好地适应复杂的生产环境,确保从池中获取的连接都是真正可用的。
性能优化与稳定性改进
除了新特性外,6.7.0版本还包含多项性能优化和稳定性改进:
-
死锁修复:解决了当提供无效URI时
DefaultClusterTopologyRefresh可能出现的死锁问题,提高了集群环境下的稳定性。 -
连接获取优化:通过双重检查锁机制改进了写连接的获取性能,减少了高并发场景下的锁竞争。
-
默认传输层调整:将默认的本地传输层从io_uring改回epoll,因为在实际测试中发现epoll在当前环境下表现更为稳定。
-
字符串拼接优化:优化了节点选择过程中的字符串拼接操作,减少了不必要的对象创建。
开发者体验提升
Lettuce团队持续关注开发者体验,在6.7.0版本中:
-
完善了文档中的示例代码,特别是关于排序集合和列表操作的部分,现在所有示例都明确展示了
join()方法的使用,帮助开发者避免常见的异步编程陷阱。 -
新增了关于原生库冲突解决的指南,帮助开发者在复杂依赖环境中正确配置Lettuce。
-
改进了错误处理,当Redis服务器关闭时,通过调整
disconnectedBehavior选项的行为,避免了不必要的超时等待。
向后兼容性
Lettuce 6.7.0保持了良好的向后兼容性:
- 仍然支持Java 8及更高版本(包括Java 24)
- 兼容Redis 2.6到8.x的所有版本
- 测试覆盖Redis 8.0、7.4和7.2等主要版本
值得注意的是,6.7.0版本开始标记DnsResolver为过时,推荐使用更灵活的AddressResolverGroup替代,开发者应逐步迁移相关代码。
总结
Lettuce 6.7.0通过添加向量搜索支持和增强连接池功能,进一步巩固了其作为Java生态中最先进的Redis客户端地位。对于正在构建AI应用的开发者,新版本提供了开箱即用的向量搜索能力;对于企业用户,改进的连接池验证机制带来了更高的可靠性。
性能优化和稳定性改进使得这个版本特别适合生产环境部署,而文档和开发者体验的持续投入则降低了新用户的学习曲线。无论是新项目还是现有系统升级,Lettuce 6.7.0都值得考虑。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00