首页
/ 探索艺术之美:ArtBench 开源数据集与生成模型的黄金搭档

探索艺术之美:ArtBench 开源数据集与生成模型的黄金搭档

2024-06-08 11:41:52作者:史锋燃Gardner

在人工智能和机器学习领域,高质量的数据集是推动算法进步的关键。今天,我们要向您推荐一个独特的数据集——ArtBench,这是首个针对艺术品生成模型进行基准测试的专业数据集。由 Berkeley 团队精心打造的 ArtBench-10,旨在打破以往艺术品数据集的局限性,为研究者提供更为均衡、高质量且标准化的艺术品图像资源。

项目介绍

ArtBench-10 包含了来自10种不同艺术风格的60,000幅图像,每个风格都有5,000张训练图像和1,000张测试图像。这些图像经过精心整理和标注,确保了数据的质量和准确性。特别的是,ArtBench 追求类别的平衡,避免了长尾分布的问题,这使得它在评估模型的多样性和公平性上具有显著优势。

技术分析

ArtBench 提供了三个分辨率版本(32x32,256x256,以及原始大小),兼容各种机器学习框架。例如,它以CIFAR和ImageFolder格式提供,无缝对接 PyTorch 和其他流行库。此外,还提供了适用于 C 程序和 tensorflow-datasets 的二进制版本,以及原始尺寸的 LSUN 格式。通过简单的代码示例(如图所示)就可以轻松集成到 PyTorch 工作流中。

# 在 PyTorch 中使用 ArtBench 的简单示例
from artbench import ArtBench

data = ArtBench(root='./', split='test', transform=None)
images, labels = data[0]

应用场景

ArtBench 的出现不仅为研究人员提供了一个全新的基准测试工具,还为以下场景的应用开辟了新的道路:

  1. 生成对抗网络(GANs) - 利用 ArtBench 可以评估 GANs 对不同艺术风格的捕捉和创造能力。
  2. 风格迁移 - 训练模型将现有图像转换成特定艺术风格。
  3. 视觉识别 - 在艺术图像识别任务中的性能评估和模型优化。
  4. 跨领域的图像分析 - 融合艺术史和计算机视觉的研究。

项目特点

  1. 类别平衡 - 所有风格的图像数量相等,有利于公正比较模型性能。
  2. 高质量 - 图像干净清晰,便于准确标注和分析。
  3. 标准化 - 统一的数据收集、注解、过滤和预处理流程,确保一致性。
  4. 易用性 - 提供多种格式,适应不同编程语言和框架。

如果您对艺术生成或相关领域感兴趣,ArtBench 将是一个不可或缺的资源。当您在探索艺术与技术的交汇处寻找灵感时,这个数据集将是您的得力助手。在您的研究成果中引用 ArtBench,让我们的社区共同进步!

@article{liao2022artbench,
  title={The ArtBench Dataset: Benchmarking Generative Models with Artworks},
  author={Liao, Peiyuan and Li, Xiuyu and Liu, Xihui and Keutzer, Kurt},
  journal={arXiv preprint arXiv:2206.11404},
  year={2022}
}

让我们一起踏足艺术与科技的前沿,用 ArtBench 打造出独具创意的智能应用吧!

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
152
1.97 K
kernelkernel
deepin linux kernel
C
22
6
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
426
34
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
239
9
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
988
394
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
936
554
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
69