iTransformer项目中Feed-Forward与Attention层顺序的深度解析
2025-07-10 10:20:00作者:舒璇辛Bertina
在Transformer架构的研究中,iTransformer项目作为清华大学提出的创新模型,其层间结构设计值得深入探讨。本文将从技术原理角度分析Transformer Block中Feed-Forward层与Attention层的顺序安排。
标准Transformer Block结构解析
传统Transformer Block的标准结构遵循"Attention后接Feed-Forward"的设计范式。这种顺序安排源于2017年原始Transformer论文的设计,其典型结构为:
- Multi-Head Attention层
- Add & Norm操作
- Feed-Forward Network层
- 再次Add & Norm操作
这种设计背后的理论基础在于:Attention机制首先建立全局的token间依赖关系,然后通过FFN层进行逐位置的特征变换和非线性处理。
顺序调换的可能性探讨
从技术原理上讲,调换Attention和FFN的顺序确实存在可能性。iTransformer项目中的讨论指出,可以将第一层embedding视为特殊的MLP(Feed-Forward网络),这样整体结构就变成了N个(MLP→Attention)模块的组合,最后接Projection层。
这种变体结构的潜在优势包括:
- 先进行特征空间的非线性变换,可能帮助Attention机制更好地捕捉高阶特征关系
- 对于某些特定任务,可能提供不同的特征提取路径
- 增加了模型架构的多样性选择
顺序选择的影响因素
在实际应用中,层顺序的选择需要考虑多个因素:
- 特征处理流程:标准顺序先建立全局关系再局部处理,而逆序则先局部后全局
- 训练稳定性:不同顺序可能导致梯度传播特性变化
- 任务特性:某些任务可能更适合特定的处理顺序
- 计算效率:不同顺序可能影响并行化程度
iTransformer的创新视角
iTransformer项目对传统Transformer结构进行了重新思考,其设计理念可能包含对层顺序的灵活处理。这种灵活性体现了现代Transformer研究的一个重要趋势:不再拘泥于固定架构,而是根据具体需求和实验效果进行结构调整。
实践建议
对于研究人员和工程师,建议在实际应用中:
- 首先验证标准结构的性能
- 针对特定任务尝试顺序调整
- 结合其他改进方法(如Normalization位置)进行综合优化
- 注意不同顺序对模型收敛性和稳定性的影响
这种层顺序的探索也反映了深度学习领域一个重要的方法论:经典结构并非不可改变,通过合理的理论分析和实验验证,可以找到更适合特定场景的架构变体。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C040
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0120
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
434
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
274
暂无简介
Dart
694
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
673
仓颉编译器源码及 cjdb 调试工具。
C++
138
869