iTransformer项目中Feed-Forward与Attention层顺序的深度解析
2025-07-10 19:35:20作者:舒璇辛Bertina
在Transformer架构的研究中,iTransformer项目作为清华大学提出的创新模型,其层间结构设计值得深入探讨。本文将从技术原理角度分析Transformer Block中Feed-Forward层与Attention层的顺序安排。
标准Transformer Block结构解析
传统Transformer Block的标准结构遵循"Attention后接Feed-Forward"的设计范式。这种顺序安排源于2017年原始Transformer论文的设计,其典型结构为:
- Multi-Head Attention层
- Add & Norm操作
- Feed-Forward Network层
- 再次Add & Norm操作
这种设计背后的理论基础在于:Attention机制首先建立全局的token间依赖关系,然后通过FFN层进行逐位置的特征变换和非线性处理。
顺序调换的可能性探讨
从技术原理上讲,调换Attention和FFN的顺序确实存在可能性。iTransformer项目中的讨论指出,可以将第一层embedding视为特殊的MLP(Feed-Forward网络),这样整体结构就变成了N个(MLP→Attention)模块的组合,最后接Projection层。
这种变体结构的潜在优势包括:
- 先进行特征空间的非线性变换,可能帮助Attention机制更好地捕捉高阶特征关系
- 对于某些特定任务,可能提供不同的特征提取路径
- 增加了模型架构的多样性选择
顺序选择的影响因素
在实际应用中,层顺序的选择需要考虑多个因素:
- 特征处理流程:标准顺序先建立全局关系再局部处理,而逆序则先局部后全局
- 训练稳定性:不同顺序可能导致梯度传播特性变化
- 任务特性:某些任务可能更适合特定的处理顺序
- 计算效率:不同顺序可能影响并行化程度
iTransformer的创新视角
iTransformer项目对传统Transformer结构进行了重新思考,其设计理念可能包含对层顺序的灵活处理。这种灵活性体现了现代Transformer研究的一个重要趋势:不再拘泥于固定架构,而是根据具体需求和实验效果进行结构调整。
实践建议
对于研究人员和工程师,建议在实际应用中:
- 首先验证标准结构的性能
- 针对特定任务尝试顺序调整
- 结合其他改进方法(如Normalization位置)进行综合优化
- 注意不同顺序对模型收敛性和稳定性的影响
这种层顺序的探索也反映了深度学习领域一个重要的方法论:经典结构并非不可改变,通过合理的理论分析和实验验证,可以找到更适合特定场景的架构变体。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
329
388
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
188
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
136