Sidekiq中CurrentAttributes在inline执行后丢失的问题分析
2025-05-17 23:48:25作者:吴年前Myrtle
问题背景
在Sidekiq 7.2.4版本中,当使用perform_inline方法执行作业时,发现CurrentAttributes的当前属性会在执行后被意外重置。这个问题在从Sidekiq 6升级到7的过程中被发现,特别是当父作业调用子作业时,父作业会丢失其当前的属性设置。
技术细节
CurrentAttributes是Rails提供的一个功能,允许开发者存储当前请求的全局状态。在Sidekiq中,这个功能被用来在作业执行期间保持某些上下文信息。
问题的核心在于Sidekiq::CurrentAttributes::Load#call方法的实现。当前实现会在作业执行后重置所有属性,而不是使用ActiveSupport::CurrentAttributes的set方法来正确嵌套属性设置。
解决方案
有两种可行的解决方案:
- 链式调用方案:使用
inject方法将多个CurrentAttributes类串联起来,形成嵌套的set调用。
klass_attrs.inject(block) { |chain, (klass, attrs)|
-> { klass.set(attrs, &chain) }
}.call
- 递归方案:使用递归方法逐步处理每个CurrentAttributes类的设置,代码更易读。
def wrap(klass_attrs, &block)
klass, attrs = klass_attrs.shift
return block.call unless klass
klass.set(attrs) do
wrap(klass_attrs, &block)
end
end
两种方案都能正确保持CurrentAttributes的上下文,但递归方案在可读性上更胜一筹,因此被Sidekiq维护者采纳。
影响范围
这个问题主要影响以下场景:
- 使用
perform_inline测试作业 - 作业内部调用其他作业(形成作业链)
- 依赖CurrentAttributes保持执行上下文的场景
最佳实践
对于使用Sidekiq和CurrentAttributes的开发者,建议:
- 在测试中明确验证CurrentAttributes的持久性
- 避免在作业中直接修改CurrentAttributes,而是通过参数传递
- 升级到包含修复的Sidekiq版本
总结
这个问题展示了在异步任务处理中维护执行上下文的重要性。通过正确使用ActiveSupport::CurrentAttributes的嵌套set方法,Sidekiq现在能够更好地保持作业执行期间的CurrentAttributes状态,为复杂的工作流提供了更可靠的上下文管理能力。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92