argocd-mcp 的安装和配置教程
项目基础介绍
argocd-mcp 是一个实现了模型上下文协议(Model Context Protocol, MCP)的服务器,专门为 Argo CD 设计。它允许 AI 助手通过自然语言与 Argo CD 应用进行交互。此项目支持与 Visual Studio Code 和其他 MCP 客户端的无缝集成,通过标准输入输出(stdio)和 HTTP 流传输协议进行通信。该项目主要由 TypeScript 语言编写。
项目使用的关键技术和框架
本项目主要使用了以下技术和框架:
- Node.js:运行环境,用于执行后端服务。
- TypeScript:静态类型语言的超集,为 JavaScript 提供了类型系统和对 ES6 的支持。
- Model Context Protocol (MCP):允许客户端与 AI 助手进行交互的协议。
- Argo CD API:与 Argo CD 进行交互的接口。
安装和配置准备工作
在开始安装 argocd-mcp 之前,请确保您的系统中已经安装以下必要的软件:
- Node.js(推荐版本 v18 或更高)
pnpm包管理器(用于开发)- Argo CD 实例以及 API 访问权限
- Argo CD API 令牌(查看文档获取指令)
安装步骤
以下是详细的安装步骤:
-
克隆项目仓库
使用 Git 命令克隆项目仓库到本地:
git clone https://github.com/akuity/argocd-mcp.git cd argocd-mcp -
安装项目依赖
在项目根目录下,使用
pnpm安装项目依赖:pnpm install -
启动开发服务器
运行以下命令启动开发服务器,并开启热重载功能:
pnpm run dev -
配置 MCP 服务器
根据您使用的客户端(如 Cursor、VSCode 或 Claude Desktop),在项目根目录下创建相应的配置文件,并设置 Argo CD 的基础 URL 和 API 令牌。
-
对于 Cursor,创建
cursor/mcp.json文件:{ "mcpServers": { "argocd-mcp": { "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } } -
对于 VSCode,创建
.vscode/mcp.json文件:{ "servers": { "argocd-mcp-stdio": { "type": "stdio", "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } } -
对于 Claude Desktop,创建
claude_desktop_config.json文件:{ "mcpServers": { "argocd-mcp": { "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } }
替换
<argocd_url>和<argocd_token>为您的 Argo CD 实例的 URL 和 API 令牌。 -
-
使用自签名证书
如果您的 Argo CD 实例使用自签名证书或来自私有证书颁发机构的证书,您可能需要在配置中添加以下环境变量以禁用 TLS 证书验证:
"NODE_TLS_REJECT_UNAUTHORIZED": "0"注意:禁用 SSL 验证会降低安全性。仅在开发环境中使用此设置,或者当您了解安全影响时使用。
按照上述步骤操作后,您应该能够成功安装并配置 argocd-mcp,开始与 Argo CD 进行交互。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00