argocd-mcp 的安装和配置教程
项目基础介绍
argocd-mcp 是一个实现了模型上下文协议(Model Context Protocol, MCP)的服务器,专门为 Argo CD 设计。它允许 AI 助手通过自然语言与 Argo CD 应用进行交互。此项目支持与 Visual Studio Code 和其他 MCP 客户端的无缝集成,通过标准输入输出(stdio)和 HTTP 流传输协议进行通信。该项目主要由 TypeScript 语言编写。
项目使用的关键技术和框架
本项目主要使用了以下技术和框架:
- Node.js:运行环境,用于执行后端服务。
- TypeScript:静态类型语言的超集,为 JavaScript 提供了类型系统和对 ES6 的支持。
- Model Context Protocol (MCP):允许客户端与 AI 助手进行交互的协议。
- Argo CD API:与 Argo CD 进行交互的接口。
安装和配置准备工作
在开始安装 argocd-mcp 之前,请确保您的系统中已经安装以下必要的软件:
- Node.js(推荐版本 v18 或更高)
pnpm包管理器(用于开发)- Argo CD 实例以及 API 访问权限
- Argo CD API 令牌(查看文档获取指令)
安装步骤
以下是详细的安装步骤:
-
克隆项目仓库
使用 Git 命令克隆项目仓库到本地:
git clone https://github.com/akuity/argocd-mcp.git cd argocd-mcp -
安装项目依赖
在项目根目录下,使用
pnpm安装项目依赖:pnpm install -
启动开发服务器
运行以下命令启动开发服务器,并开启热重载功能:
pnpm run dev -
配置 MCP 服务器
根据您使用的客户端(如 Cursor、VSCode 或 Claude Desktop),在项目根目录下创建相应的配置文件,并设置 Argo CD 的基础 URL 和 API 令牌。
-
对于 Cursor,创建
cursor/mcp.json文件:{ "mcpServers": { "argocd-mcp": { "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } } -
对于 VSCode,创建
.vscode/mcp.json文件:{ "servers": { "argocd-mcp-stdio": { "type": "stdio", "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } } -
对于 Claude Desktop,创建
claude_desktop_config.json文件:{ "mcpServers": { "argocd-mcp": { "command": "npx", "args": ["argocd-mcp@latest", "stdio"], "env": { "ARGOCD_BASE_URL": "<argocd_url>", "ARGOCD_API_TOKEN": "<argocd_token>" } } } }
替换
<argocd_url>和<argocd_token>为您的 Argo CD 实例的 URL 和 API 令牌。 -
-
使用自签名证书
如果您的 Argo CD 实例使用自签名证书或来自私有证书颁发机构的证书,您可能需要在配置中添加以下环境变量以禁用 TLS 证书验证:
"NODE_TLS_REJECT_UNAUTHORIZED": "0"注意:禁用 SSL 验证会降低安全性。仅在开发环境中使用此设置,或者当您了解安全影响时使用。
按照上述步骤操作后,您应该能够成功安装并配置 argocd-mcp,开始与 Argo CD 进行交互。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00