TTS项目中孟加拉语数字发音问题的技术解析
在TTS文本转语音系统中,处理多语言文本时经常会遇到字符集和发音规范化的挑战。最近在TTS项目的孟加拉语模型中,发现了一个关于数字发音的有趣技术问题。
问题背景
当使用孟加拉语VITS模型处理包含孟加拉数字的文本时,系统无法正确识别和发音数字字符。例如输入文本"১৯৫৪ সাল। কালো রাত।"(意为"1954年。黑暗之夜。")时,系统日志显示无法识别字符'৯'(孟加拉数字9),导致该字符被丢弃。
技术分析
这个问题本质上涉及两个层面的技术挑战:
-
字符集支持问题:TTS模型的词汇表中未包含完整的孟加拉数字字符集(০-৯),导致预处理阶段无法识别这些字符。
-
数字规范化问题:即使字符被识别,数字的发音也需要遵循孟加拉语的语言习惯。例如"1954"在孟加拉语中应该发音为"উনিশশ চুয়ান্ন"(unishsho chuyanno)而不是逐字发音或按数学读法发音。
解决方案
TTS项目提供了两种解决思路:
-
使用pybangla规范化工具:这是一个专门处理孟加拉语文本规范化的Python库,可以将数字转换为正确的孟加拉语发音形式。
-
使用内置的BN_Phonemizer:TTS项目本身已经集成了孟加拉语语音处理器,可以通过以下方式使用:
from TTS.tts.utils.text.phonemizers import BN_Phonemizer
bn = BN_Phonemizer()
normalized_text = bn.phonemize("১৯৫৪ সাল। কালো রাত।")
实际应用
对于终端用户,可以通过修改TTS调用代码来集成这个解决方案。核心改进是在文本送入TTS模型前,先通过孟加拉语语音处理器进行规范化处理。这种预处理步骤确保了数字和其他特殊字符能够被正确发音。
语言特性考量
值得注意的是,孟加拉语中数字的发音有其独特的语言习惯。例如:
- 年份"1954"应该发音为"উনিশশ চুয়ান্ন"而不是字面翻译的"এক হাজার নয় শত চুয়ান্ন"(一千九百五十四)
- 这种语言特定的发音规则需要在语音处理器中特别处理
总结
多语言TTS系统开发中,字符集支持和语言特定的发音规则是两个关键挑战。TTS项目通过提供语言特定的语音处理器(如BN_Phonemizer)来解决这类问题,开发者可以在预处理阶段使用这些工具来确保文本的正确发音。对于终端用户而言,理解并正确集成这些预处理步骤是获得高质量语音输出的关键。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00