CoreRuleSet项目中SQL注入规则942151的误报分析与优化建议
背景介绍
在Web应用防火墙(WAF)规则集CoreRuleSet的最新开发测试中,安全研究人员发现规则942151存在多个误报情况。这条规则旨在检测SQL注入攻击中常见的SQL函数名使用,但在实际应用中却对一些正常文本内容产生了误判。
误报现象分析
测试人员构建了一个包含16个正常文本样本的测试集,这些文本均触发了942151规则的警报。经过详细分析,误报主要由以下模式引起:
- 包含类似SQL函数名的普通词汇后接括号,如"Left (WA, RR)"、"quarter (24%)"等
- 常见英文单词与括号组合被误认为SQL函数调用,如"space ("、"position ("等
- 包含数学或统计术语的文本,如"degrees ("、"likelihood ("等
技术原理剖析
规则942151的工作原理是基于预定义的SQL函数名列表进行模式匹配。该列表包含了数据库系统中常见的函数名称,如CONVERT、DEGREES、ELT等。当这些词汇后跟左括号时,规则就会触发警报。
问题在于,许多日常使用的英文单词恰好与SQL函数名重合,特别是在技术文档、学术论文或统计报告中。例如:
- "quarter"在金融领域表示季度
- "left"可以表示方向
- "space"是普通名词
- "position"在人力资源领域指职位
优化方案建议
针对这一问题,技术团队提出了以下优化方案:
-
建立误报排除列表:创建一个专门用于排除误报的词汇列表(sql-injection-function-names-fps),包含已知会产生误报的词汇
-
改进匹配逻辑:在现有规则中引入"include-except"机制,即先匹配SQL函数名,再排除已知误报词汇
-
区分安全级别:按照CoreRuleSet的惯例,误报排除列表应标明适用的安全级别(如-pl1),以便不同安全需求的用户选择使用
-
优化正则表达式:对于特定误报模式(如"left, ("),可以通过改进正则表达式来减少误判
实施建议
对于使用CoreRuleSet的用户,建议采取以下措施:
- 关注官方更新,及时获取修复后的规则版本
- 在测试环境中验证新规则的效果,特别是检查历史误报是否得到解决
- 根据自身业务特点,考虑定制化排除列表,添加业务相关词汇
- 保持规则的定期更新,以获取最新的误报修复
总结
Web应用防火墙规则的精确性对业务正常运行至关重要。CoreRuleSet团队对942151规则的误报分析体现了对规则质量的高度重视。通过建立科学的误报排除机制,可以在保持安全防护能力的同时,显著降低对正常业务的影响。这种基于实际测试数据持续优化规则的方法,值得其他安全产品借鉴。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00