Hayabusa项目中聚合条件规则计数显示问题的技术分析
2025-06-30 11:27:13作者:滑思眉Philip
问题背景
在Hayabusa日志分析工具中,当使用聚合条件规则(如密码猜测攻击检测)时,系统能够正确识别并输出聚合结果,但在统计摘要部分(如"Events with hits"和"Top 5 computers")却未能正确显示这些聚合规则的匹配计数。这一问题影响了用户对检测结果的全面理解,特别是在需要快速评估安全事件规模时。
技术原理
Hayabusa的检测引擎采用多层次的规则处理架构:
- 规则匹配层:负责解析和匹配单个事件记录
- 聚合处理层:对符合特定条件的事件进行计数和统计分析
- 结果输出层:生成最终的可视化报告和统计摘要
在当前的实现中,聚合规则(如Sec_4625_Med_LogonFail_WrongPW_PW-Guessing_Cnt)能够正确执行计数逻辑,并将聚合结果显示在时间线输出中。然而,这些聚合结果在后续的统计摘要生成阶段被遗漏。
问题根源
通过分析代码结构,我们发现问题的核心在于:
- 数据结构设计:当前的DetectInfo结构体没有专门为聚合结果设计字段,导致聚合信息在传递过程中丢失
- 统计逻辑:摘要统计模块仅处理基础检测信息,未考虑聚合规则的特殊性
- 生命周期管理:聚合结果的生命周期未完整覆盖到统计摘要生成阶段
解决方案
为解决这一问题,我们建议进行以下架构改进:
- 数据结构扩展:
pub struct AggResult {
pub data: i64, // 聚合计数值
pub key: String, // 分组键值
pub field_values: Vec<String>, // 字段值集合
pub id_time_pair: Vec<(String, DateTime<Utc>)> // 事件ID和时间戳
}
pub struct DetectInfo {
// 原有字段...
pub agg_result: Option<AggResult>, // 新增聚合结果字段
}
- 统计逻辑增强:
- 在结果汇总阶段增加对agg_result字段的处理
- 确保聚合计数能够参与"Events with hits"等统计计算
- 完善计算机名等关键信息的提取逻辑
- 性能考量:
- 聚合结果可能包含大量数据,需注意内存管理
- 考虑对高频聚合规则进行优化处理
实现影响
这一改进将带来以下积极影响:
- 功能完整性:用户能够全面了解所有检测结果,包括聚合规则匹配
- 数据分析能力:安全团队可以更准确地评估攻击规模和模式
- 用户体验:统计摘要更真实反映实际检测情况
最佳实践建议
对于使用Hayabusa的安全分析人员,在处理聚合规则时应注意:
- 同时查看时间线输出和统计摘要,以获得完整信息
- 对于关键聚合规则,可考虑单独运行并分析结果
- 关注聚合计数与原始事件数量的关系,评估攻击严重性
这一改进已纳入Hayabusa的后续版本计划,将显著提升工具在复杂威胁检测场景下的实用性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26