Revm项目中的Exec API设计与实现思考
2025-07-07 18:56:26作者:薛曦旖Francesca
背景与现状
在区块链虚拟机(Revm)项目中,当前存在一个Exec
trait,它定义了执行交易的基本接口。这个trait目前是在Evm
结构体上实现的,而Evm
结构体同时包含了执行上下文(Context)和处理程序(Handler)。这种设计存在一定的不合理性,因为实际上执行交易只需要上下文就足够了。
问题分析
当前设计的主要问题在于:
- 执行逻辑与处理程序耦合度过高
- 难以支持不同链(如主网和Layer2网络)的差异化执行
- 缺乏统一的执行接口,导致代码复用性差
改进方案
基于上下文的Exec实现
核心思想是将Exec
trait的实现从Evm
迁移到Context
上。这样做的优势在于:
- 简化执行流程,只需要上下文即可完成交易执行
- 减少不必要的依赖和耦合
- 提高代码的模块化程度
多链执行支持
为了支持Layer2网络等不同链的执行,可以引入L2Context
新类型包装器。这种设计模式允许我们:
- 为不同链定义特定的执行逻辑
- 保持统一的执行接口
- 在需要时进行链类型转换
执行器与检查器分离
建议将执行逻辑与检查逻辑分离:
Exec
trait专注于纯粹的执行功能- 新增
Inspect
trait处理检查逻辑 - 通过组合而非继承的方式实现功能扩展
技术实现细节
类型系统设计
// Layer2上下文包装器
pub struct L2Ctx<TX,BLOCK,CFG,DB: Database,JOURNAL: Journal<Database=DB>>(
Context<BLOCK,TX,CFG,DB,JOURNAL,L1BlockInfo>
);
// 基础执行trait
trait L2Exec: TransactionSetter + BlockSetter {
type Output;
fn l2_exec(&mut self) -> Self::Output;
fn l2_exec_with_tx(&mut self, tx: Self::Transaction) -> Self::Output;
}
// 检查trait
trait L2Inspect: L2Exec {
fn inspect(&mut self, insp: ()) -> Self::Output;
fn inspect_with_tx(&mut self, tx: Self::Transaction, insp: Inspector) -> Self::Output;
}
// 链类型转换trait
trait L2Into {
fn into_l2(self) -> L2Ctx<TX,..>;
fn into_mainnet(self) -> Ctx<TX,..>;
}
实现策略
- 为
Context
实现L2Exec
和L2Inspect
trait - 为
L2Ctx
实现相同的trait以保持接口一致性 - 提供统一的
Exec
和Inspect
trait实现 - 通过
L2Into
trait实现链类型转换
使用示例
fn api(tx: L2Transaction<TxEnv>) {
// 创建基础上下文
let mut ctx = Context::new(...);
ctx.set_block(BlockEnv::default());
// 作为主网执行
let out = ctx.exec(tx);
// 转换为Layer2执行
let mut ctx = ctx.with_chain(L1BlockInfo::default());
let out = ctx.l2_exec(tx);
// 显式类型转换
let mut ctx = ctx.into_l2();
ctx.exec(tx); // 现在使用Layer2逻辑执行
// 检查器使用
ctx.inspect(tx, Inspector::new());
}
设计优势
- 清晰的职责分离:将执行逻辑与上下文管理解耦
- 灵活的多链支持:通过类型系统优雅处理不同链的特殊逻辑
- 统一的接口:无论主网还是Layer2网络都使用相同的执行接口
- 可扩展性:易于添加新的链支持或执行变体
- 类型安全:利用Rust类型系统防止错误使用
总结
Revm项目中的Exec API重构方案通过将执行逻辑下移到上下文层,并引入类型系统来区分不同链的执行逻辑,实现了更清晰、更灵活的设计。这种改进不仅解决了当前架构中的耦合问题,还为未来的扩展提供了良好的基础。特别是通过新类型模式处理多链差异的设计,既保持了接口的统一性,又确保了各链特殊逻辑的正确实现。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133