LangServe项目中Runnable链间参数传递的解决方案
2025-07-04 18:08:52作者:袁立春Spencer
概述
在LangServe项目中,开发者经常需要构建由多个Runnable组成的处理链。一个常见的技术挑战是如何在这些Runnable之间传递额外的上下文参数,特别是在需要保持流式处理能力的情况下。
问题场景
考虑一个典型的LangServe应用场景:用户自定义请求类型包含一个特殊字段shared_pass_through_parameter,这个字段需要在处理链的多个阶段使用,但不会被直接传递给语言模型。传统方法是将整个处理逻辑封装在一个函数中,但这会失去LangServe提供的流式处理优势。
技术难点
- 参数丢失:当请求通过多个Runnable时,原始请求中的额外参数容易被丢弃
- 流式处理限制:简单的封装会破坏LangServe的流式处理能力
- 类型安全:需要确保参数传递过程中的类型一致性
解决方案
LangServe提供了Context机制来解决这个问题。通过结合Context.setter和Context.getter,开发者可以在处理链中安全地传递额外参数。
核心实现方式
from langchain_core.runnables import RunnablePassthrough
from langchain_core.beta.runnables.context import Context
chain = (
Context.setter('input')
| model
| to_dict
| Context.getter('input')
)
工作原理
- 参数注入:
Context.setter将输入数据注入到上下文环境中 - 处理链执行:模型和其他处理步骤正常执行
- 参数提取:
Context.getter从上下文中提取之前存储的参数 - 流式保持:整个过程保持流式处理能力
实际应用示例
假设我们需要在处理链中传递一个非自然语言参数:
async def process_with_context(input):
# 获取上下文中的额外参数
context_param = await Context.getter('shared_param').ainvoke(input)
# 处理逻辑
processed = await model.ainvoke(input)
# 使用上下文参数进行后处理
return f"{processed} with {context_param}"
chain = (
Context.setter('shared_param')
| RunnablePassthrough()
| process_with_context
)
最佳实践
- 明确参数用途:为上下文参数使用清晰的命名
- 类型注解:为处理函数添加类型提示以提高可维护性
- 错误处理:考虑上下文参数不存在的情况
- 性能考量:避免在上下文中存储大型对象
结论
LangServe的Context机制为处理链间的参数传递提供了优雅的解决方案,既保持了流式处理能力,又解决了参数传递问题。开发者可以灵活运用这一机制构建复杂的处理流程,同时保持代码的清晰和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134