LangServe项目中Runnable链间参数传递的解决方案
2025-07-04 18:08:52作者:袁立春Spencer
概述
在LangServe项目中,开发者经常需要构建由多个Runnable组成的处理链。一个常见的技术挑战是如何在这些Runnable之间传递额外的上下文参数,特别是在需要保持流式处理能力的情况下。
问题场景
考虑一个典型的LangServe应用场景:用户自定义请求类型包含一个特殊字段shared_pass_through_parameter,这个字段需要在处理链的多个阶段使用,但不会被直接传递给语言模型。传统方法是将整个处理逻辑封装在一个函数中,但这会失去LangServe提供的流式处理优势。
技术难点
- 参数丢失:当请求通过多个Runnable时,原始请求中的额外参数容易被丢弃
- 流式处理限制:简单的封装会破坏LangServe的流式处理能力
- 类型安全:需要确保参数传递过程中的类型一致性
解决方案
LangServe提供了Context机制来解决这个问题。通过结合Context.setter和Context.getter,开发者可以在处理链中安全地传递额外参数。
核心实现方式
from langchain_core.runnables import RunnablePassthrough
from langchain_core.beta.runnables.context import Context
chain = (
Context.setter('input')
| model
| to_dict
| Context.getter('input')
)
工作原理
- 参数注入:
Context.setter将输入数据注入到上下文环境中 - 处理链执行:模型和其他处理步骤正常执行
- 参数提取:
Context.getter从上下文中提取之前存储的参数 - 流式保持:整个过程保持流式处理能力
实际应用示例
假设我们需要在处理链中传递一个非自然语言参数:
async def process_with_context(input):
# 获取上下文中的额外参数
context_param = await Context.getter('shared_param').ainvoke(input)
# 处理逻辑
processed = await model.ainvoke(input)
# 使用上下文参数进行后处理
return f"{processed} with {context_param}"
chain = (
Context.setter('shared_param')
| RunnablePassthrough()
| process_with_context
)
最佳实践
- 明确参数用途:为上下文参数使用清晰的命名
- 类型注解:为处理函数添加类型提示以提高可维护性
- 错误处理:考虑上下文参数不存在的情况
- 性能考量:避免在上下文中存储大型对象
结论
LangServe的Context机制为处理链间的参数传递提供了优雅的解决方案,既保持了流式处理能力,又解决了参数传递问题。开发者可以灵活运用这一机制构建复杂的处理流程,同时保持代码的清晰和可维护性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.77 K
Ascend Extension for PyTorch
Python
347
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
607
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
184
暂无简介
Dart
778
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896