Dart AOT可执行程序在macOS上的性能分析技巧
背景介绍
在Dart语言开发中,当我们使用dart compile exe命令将Dart代码编译为AOT(提前编译)可执行文件后,有时需要对其进行性能分析。特别是在macOS平台上使用Instruments工具进行性能分析时,开发者可能会遇到无法正确解析Dart代码符号的问题。
问题本质
这个问题的根源在于Dart AOT编译生成的二进制文件结构并非完全原生的格式。实际上,它包含了一个动态加载到内存中的ELF二进制文件。大多数性能分析工具(包括macOS的Instruments)无法理解这种混合结构,因此无法正确解析Dart代码的堆栈帧信息。
解决方案
Linux平台分析方案
在Linux系统上,我们可以采用以下方法进行性能分析:
- 首先编译生成AOT快照文件:
dart compile aot-snapshot -o /tmp/test.aot /tmp/test.dart
- 使用perf工具记录性能数据:
perf record -g dartaotruntime /tmp/test.aot
- 查看分析结果:
perf report ...
为了获取更详细的源代码位置信息,可以尝试添加DWARF调试信息选项:
dart compile aot-snapshot --extra-gen-snapshot-options=--dwarf-stack-traces -o /tmp/test.aot /tmp/test.dart
macOS平台分析方案
在macOS上使用Instruments工具进行分析需要从源码构建Dart运行时:
- 构建必要的组件:
tools/build.py -m product -a arm64 dartaotruntime gen_snapshot vm_platform_strong.dill
- 预编译Dart代码:
DART_CONFIGURATION=ProductARM64 pkg/vm/tool/precompiler2 --build-assembly /tmp/test.dart /tmp/test.aot
- 使用xctrace记录性能数据:
xctrace record --output /tmp --template "CPU Profiler" --launch xcodebuild/ProductARM64/dartaotruntime /tmp/test.aot
- 打开分析结果:
open /tmp/Lauch<...>.trace
注意事项
在使用Instruments进行分析时,需要注意一个关键问题:当动态库被卸载后,Instruments可能无法正确解析指向该库的地址。由于Dart快照本身就是动态库,并且在程序结束时会被卸载,这会导致分析数据不完整。
解决方法有两种:
-
修改程序使其持续运行(例如在程序末尾添加无限循环),然后手动停止记录。
-
修改Dart运行时源码,禁止在程序结束时卸载快照(注释掉
UnloadDynamicLibrary函数)。
未来展望
Dart团队正在开发Mach-O作为输出格式,这将改善在macOS平台上的性能分析体验。未来可能会简化使用Instruments工具分析Dart AOT程序的流程,使其与Linux平台上的体验更加一致。
总结
虽然目前Dart AOT程序在macOS上的性能分析需要一些额外步骤,但通过上述方法开发者仍然可以获取有价值的性能数据。了解这些技术细节有助于开发者更好地优化Dart应用程序的性能。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00