Dart AOT可执行程序在macOS上的性能分析技巧
背景介绍
在Dart语言开发中,当我们使用dart compile exe命令将Dart代码编译为AOT(提前编译)可执行文件后,有时需要对其进行性能分析。特别是在macOS平台上使用Instruments工具进行性能分析时,开发者可能会遇到无法正确解析Dart代码符号的问题。
问题本质
这个问题的根源在于Dart AOT编译生成的二进制文件结构并非完全原生的格式。实际上,它包含了一个动态加载到内存中的ELF二进制文件。大多数性能分析工具(包括macOS的Instruments)无法理解这种混合结构,因此无法正确解析Dart代码的堆栈帧信息。
解决方案
Linux平台分析方案
在Linux系统上,我们可以采用以下方法进行性能分析:
- 首先编译生成AOT快照文件:
dart compile aot-snapshot -o /tmp/test.aot /tmp/test.dart
- 使用perf工具记录性能数据:
perf record -g dartaotruntime /tmp/test.aot
- 查看分析结果:
perf report ...
为了获取更详细的源代码位置信息,可以尝试添加DWARF调试信息选项:
dart compile aot-snapshot --extra-gen-snapshot-options=--dwarf-stack-traces -o /tmp/test.aot /tmp/test.dart
macOS平台分析方案
在macOS上使用Instruments工具进行分析需要从源码构建Dart运行时:
- 构建必要的组件:
tools/build.py -m product -a arm64 dartaotruntime gen_snapshot vm_platform_strong.dill
- 预编译Dart代码:
DART_CONFIGURATION=ProductARM64 pkg/vm/tool/precompiler2 --build-assembly /tmp/test.dart /tmp/test.aot
- 使用xctrace记录性能数据:
xctrace record --output /tmp --template "CPU Profiler" --launch xcodebuild/ProductARM64/dartaotruntime /tmp/test.aot
- 打开分析结果:
open /tmp/Lauch<...>.trace
注意事项
在使用Instruments进行分析时,需要注意一个关键问题:当动态库被卸载后,Instruments可能无法正确解析指向该库的地址。由于Dart快照本身就是动态库,并且在程序结束时会被卸载,这会导致分析数据不完整。
解决方法有两种:
-
修改程序使其持续运行(例如在程序末尾添加无限循环),然后手动停止记录。
-
修改Dart运行时源码,禁止在程序结束时卸载快照(注释掉
UnloadDynamicLibrary函数)。
未来展望
Dart团队正在开发Mach-O作为输出格式,这将改善在macOS平台上的性能分析体验。未来可能会简化使用Instruments工具分析Dart AOT程序的流程,使其与Linux平台上的体验更加一致。
总结
虽然目前Dart AOT程序在macOS上的性能分析需要一些额外步骤,但通过上述方法开发者仍然可以获取有价值的性能数据。了解这些技术细节有助于开发者更好地优化Dart应用程序的性能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00