Supervision项目中的OBB评估API实现进展
在计算机视觉领域,随着目标检测技术的不断发展,旋转目标检测(Oriented Object Detection)正逐渐成为研究热点。RoboFlow开源的Supervision项目作为一款强大的计算机视觉工具库,近期正在积极扩展对旋转边界框(Oriented Bounding Boxes, OBB)的支持。
OBB评估的技术挑战
传统目标检测使用轴对齐的矩形框(Axis-Aligned Bounding Boxes)来表示物体位置,而旋转目标检测则引入了带有角度信息的边界框,能够更精确地表示旋转物体。这种表示方式虽然提高了检测精度,但也带来了新的技术挑战:
- IoU计算复杂度增加:旋转框之间的交并比计算比普通矩形框复杂得多
- 数据格式多样性:存在xywhr(中心点坐标、宽高和旋转角度)和xyxyxyxy(四个角点坐标)等多种表示方式
- 评估指标适配:需要重新设计评估指标的计算方法
Supervision的解决方案
Supervision项目团队采取了分阶段实现的策略来解决这些挑战:
第一阶段:基础IoU计算实现
项目首先实现了旋转框IoU计算的基础功能。考虑到尽量减少依赖的原则,团队没有引入shapely等额外库,而是采用了将旋转框视为多边形并转换为掩码的方法:
- 将旋转框转换为多边形表示
- 将多边形转换为二进制掩码
- 基于掩码计算IoU
这种方法虽然精度上有所妥协,但作为初步实现已经能够满足基本评估需求。
第二阶段:评估指标集成
在完成基础IoU计算后,项目开始将其集成到评估API中,特别是MeanAveragePrecision(mAP)指标。主要修改包括:
- 移除对检测类型的限制检查
- 增加对旋转框类型的支持分支
- 使用新的oriented_box_iou_batch函数计算IoU
- 优化数组处理逻辑
未来发展方向
Supervision团队计划进一步完善旋转目标检测的支持:
-
算法优化:探索更精确的IoU计算方法,可能包括:
- 基于几何计算的精确解法
- 参考主流框架(如Ultralytics、MMRotate)的实现
- 可能的自定义高效算法
-
格式转换工具:增强不同旋转框表示格式之间的转换能力,特别是处理不完美矩形的情况
-
完整评估流程:构建从数据加载到结果分析的完整旋转目标检测评估流程
技术选型思考
在实现过程中,团队面临了几个关键决策点:
- 依赖管理:坚持最小依赖原则,避免引入shapely等库
- 精度与效率平衡:初步实现选择掩码法而非精确几何计算
- 兼容性考虑:保持与现有评估API的一致性,同时扩展新功能
这些决策体现了项目团队对工程实践的深刻理解,既满足了当前需求,又为未来发展留下了空间。
总结
Supervision项目对旋转目标检测评估的支持正在稳步推进,从基础IoU计算到完整评估指标的实现,展现了开源项目响应技术发展趋势的能力。这一功能的完善将为旋转目标检测领域的研究者和开发者提供强有力的工具支持,促进相关技术的发展和应用落地。随着后续更精确算法的引入和功能扩展,Supervision有望成为旋转目标检测评估的重要参考实现。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00