Optax项目中L-BFGS优化器的实现与使用要点
2025-07-07 01:40:44作者:吴年前Myrtle
概述
在深度学习优化领域,L-BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno)算法作为一种准牛顿方法,因其内存效率和收敛特性而广受欢迎。本文将深入探讨Optax项目中L-BFGS优化器的实现细节、常见问题及解决方案。
L-BFGS算法原理
L-BFGS是BFGS算法的内存优化版本,通过存储有限数量的向量来近似Hessian矩阵的逆,从而避免了存储完整Hessian矩阵的高内存消耗。其核心思想是利用目标函数的梯度信息构建近似的二阶导数信息,实现更快的收敛速度。
Optax与Jaxopt实现差异
Optax和Jaxopt都提供了L-BFGS的实现,但存在一些关键差异:
- 初始步长处理:Optax在每次迭代时默认使用步长1作为初始猜测,而Jaxopt可能有不同的初始化策略
- 梯度处理:Optax在第一次迭代时会对梯度进行裁剪
- 线搜索实现:两个库使用的默认线搜索算法可能不同
常见问题与解决方案
损失函数不下降问题
在使用Optax的L-BFGS时,用户可能会遇到损失函数不下降甚至上升的情况。这通常与以下因素有关:
- 线搜索失败:当最大线搜索步数设置过小时,算法可能无法找到合适的步长
- 梯度不匹配:如果提供给优化器的梯度与目标函数值不匹配(如对梯度进行了额外处理),会导致搜索方向不正确
- 参数设置不当:如学习率、容差等超参数设置不合理
解决方案包括:
- 增加线搜索的最大步数
- 确保梯度计算与目标函数一致
- 使用verbose选项调试线搜索过程
不可微性问题
L-BFGS算法内部通常使用jax.lax.while_loop实现,这使得它无法直接支持反向模式自动微分。在元学习等需要微分优化过程的场景中,可以考虑:
- 使用隐函数定理实现自定义JVP
- 考虑其他支持可微循环的优化库
最佳实践建议
- 参数初始化:合理设置初始学习率和线搜索参数
- 梯度一致性:确保提供给优化器的梯度与目标函数完全匹配
- 监控调试:使用verbose选项监控优化过程
- 超参数调整:根据问题特性调整历史大小、最大迭代次数等参数
结论
Optax提供的L-BFGS实现是一个强大的优化工具,但需要正确理解其实现细节和使用方法。通过合理设置参数和确保算法前提条件的满足,可以充分发挥其优化性能。对于特殊需求如元学习场景,可能需要考虑算法变体或其他实现方式。
理解这些实现细节和潜在问题,将帮助开发者更有效地使用Optax中的L-BFGS优化器解决实际问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355