探索不确定性的智慧:基于Pyro和PyTorch的贝叶斯神经网络在MNIST上的实现
2024-05-21 14:21:27作者:袁立春Spencer
探索不确定性的智慧:基于Pyro和PyTorch的贝叶斯神经网络在MNIST上的实现
1. 项目介绍
在这个开源项目中,我们将深入研究如何使用Pyro库和PyTorch构建一个能够表达不确定性预测的贝叶斯神经网络(Bayesian Neural Network, BNN)。该项目是针对Getting your Neural Network to Say "I Don't Know" - Bayesian NNs using Pyro and Pytorch这篇教程配套的代码实现。通过这个项目,您可以亲自实践让神经网络学习何时不确定,并且在不确信时给出“我不知道”的回答。
2. 项目技术分析
项目的核心在于使用了Pyro,这是一个强大的概率编程库,它与PyTorch深度学习框架紧密结合,为建立复杂的贝叶斯模型提供了便利。Pyro允许我们对权重进行建模,使其成为随机变量,从而可以进行后验推断以捕获模型不确定性。配合Numpy用于数据处理,以及Matplotlib进行可视化,整个流程提供了一个完整的端到端解决方案,使你能直观理解BNN的工作原理。
3. 项目及技术应用场景
该项目使用经典的MNIST手写数字识别数据集,这使得它成为一个理想的实验平台,你可以观察到BNN如何在面对模糊或难以识别的手写数字时表现其不确定性。这种能够量化不确定性的能力,在现实世界的应用如医疗诊断、金融风险评估或者自动驾驶汽车的安全决策等场景中尤其有价值,这些场合需要模型能准确地表示出自己的预测信心水平。
4. 项目特点
- 易于上手:项目以Jupyter Notebook的形式呈现,便于学习和调试。
- 灵活性:Pyro库的使用使得我们可以灵活地定义和调整模型结构,探索不同的先验分布和后验推断策略。
- 可视化:利用Matplotlib进行结果可视化,帮助直观理解BNN的行为。
- 许可证:本项目采用MIT许可证,这意味着您可以自由地使用、修改和分享代码。
通过参与这个开源项目,您不仅可以学习到贝叶斯神经网络的基础知识,还能掌握如何使用Pyro和PyTorch来实现这一前沿技术。现在就加入,让您的机器学习模型更聪明地表达“我知道”与“我还不确定”。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19