yfinance项目遭遇Yahoo Finance API限流问题的分析与解决方案
2025-05-13 22:08:42作者:凌朦慧Richard
问题背景
近期,众多开发者在使用Python金融数据获取库yfinance时遇到了严重的API限流问题。当用户尝试通过yfinance获取股票市场数据时,系统会返回"YFRateLimitError('Too Many Requests. Rate limited. Try after a while.')"错误。这一问题在2025年4月底集中爆发,影响了全球范围内的yfinance用户。
问题现象分析
该问题表现为:
- 无论使用何种IP地址,都会遭遇相同的限流错误
- 直接通过浏览器访问Yahoo Finance API却能正常工作
- 问题出现时间集中在周一/周二,暗示可能是Yahoo方面进行了企业级API变更
技术原因探究
经过开发者社区深入分析,发现根本原因在于:
Yahoo Finance近期升级了其API防护机制,采用了更先进的TLS指纹识别技术。传统的Python requests库发起的请求会被识别为非浏览器流量,从而触发限流机制。而浏览器和curl等工具由于具有不同的TLS指纹特征,仍能正常访问。
解决方案演进
初期解决方案
开发者TianqiMikeHu首先提出使用curl_cffi库来模拟浏览器TLS指纹的方案:
from curl_cffi import requests
session = requests.Session(impersonate="chrome")
ticker = yf.Ticker('...', session=session)
这种方法通过模拟Chrome浏览器的TLS指纹特征,成功绕过了Yahoo的API限流机制。
进阶解决方案
随着Yahoo进一步升级防护,开发者codyfletcher提出了更完善的解决方案,需要额外处理cookie问题:
- 安装curl_cffi库:
pip install curl_cffi
- 创建yfinance_cookie_patch.py补丁文件:
from requests.cookies import create_cookie
import yfinance.data as _data
def _wrap_cookie(cookie, session):
if isinstance(cookie, str):
value = session.cookies.get(cookie)
return create_cookie(name=cookie, value=value)
return cookie
def patch_yfdata_cookie_basic():
original = _data.YfData._get_cookie_basic
def _patched(self, proxy=None, timeout=30):
cookie = original(self, proxy, timeout)
return _wrap_cookie(cookie, self._session)
_data.YfData._get_cookie_basic = _patched
- 在主程序中使用:
import yfinance as yf
from curl_cffi import requests as curl_requests
import yfinance_cookie_patch
yfinance_cookie_patch.patch_yfdata_cookie_basic()
def main():
session = curl_requests.Session(impersonate="chrome")
ticker = yf.Ticker("AAPL", session=session)
df = ticker.history(raise_errors=True)
print(df)
注意事项
- 在AWS Lambda等无服务器环境中使用时,需确保使用较新的Amazon Linux版本
- 部分旧版Docker镜像可能不支持TLS指纹模拟功能
- 务必设置raise_errors=True以便及时发现和处理错误
- 对于空数据返回问题,通常是由于cookie处理不当导致
未来展望
yfinance项目维护团队已计划将TLS指纹模拟功能集成到主分支中,作为默认设置。这将从根本上解决API限流问题,为用户提供更稳定的数据获取体验。
总结
面对金融数据API日益严格的反爬机制,开发者需要不断更新技术手段。通过模拟浏览器TLS指纹特征,我们能够在不违反服务条款的前提下,继续获取所需的金融数据。这一解决方案不仅适用于yfinance项目,也为其他面临类似API限流问题的项目提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355