yfinance项目遭遇Yahoo Finance API限流问题的分析与解决方案
2025-05-13 03:42:31作者:凌朦慧Richard
问题背景
近期,众多开发者在使用Python金融数据获取库yfinance时遇到了严重的API限流问题。当用户尝试通过yfinance获取股票市场数据时,系统会返回"YFRateLimitError('Too Many Requests. Rate limited. Try after a while.')"错误。这一问题在2025年4月底集中爆发,影响了全球范围内的yfinance用户。
问题现象分析
该问题表现为:
- 无论使用何种IP地址,都会遭遇相同的限流错误
- 直接通过浏览器访问Yahoo Finance API却能正常工作
- 问题出现时间集中在周一/周二,暗示可能是Yahoo方面进行了企业级API变更
技术原因探究
经过开发者社区深入分析,发现根本原因在于:
Yahoo Finance近期升级了其API防护机制,采用了更先进的TLS指纹识别技术。传统的Python requests库发起的请求会被识别为非浏览器流量,从而触发限流机制。而浏览器和curl等工具由于具有不同的TLS指纹特征,仍能正常访问。
解决方案演进
初期解决方案
开发者TianqiMikeHu首先提出使用curl_cffi库来模拟浏览器TLS指纹的方案:
from curl_cffi import requests
session = requests.Session(impersonate="chrome")
ticker = yf.Ticker('...', session=session)
这种方法通过模拟Chrome浏览器的TLS指纹特征,成功绕过了Yahoo的API限流机制。
进阶解决方案
随着Yahoo进一步升级防护,开发者codyfletcher提出了更完善的解决方案,需要额外处理cookie问题:
- 安装curl_cffi库:
pip install curl_cffi
- 创建yfinance_cookie_patch.py补丁文件:
from requests.cookies import create_cookie
import yfinance.data as _data
def _wrap_cookie(cookie, session):
if isinstance(cookie, str):
value = session.cookies.get(cookie)
return create_cookie(name=cookie, value=value)
return cookie
def patch_yfdata_cookie_basic():
original = _data.YfData._get_cookie_basic
def _patched(self, proxy=None, timeout=30):
cookie = original(self, proxy, timeout)
return _wrap_cookie(cookie, self._session)
_data.YfData._get_cookie_basic = _patched
- 在主程序中使用:
import yfinance as yf
from curl_cffi import requests as curl_requests
import yfinance_cookie_patch
yfinance_cookie_patch.patch_yfdata_cookie_basic()
def main():
session = curl_requests.Session(impersonate="chrome")
ticker = yf.Ticker("AAPL", session=session)
df = ticker.history(raise_errors=True)
print(df)
注意事项
- 在AWS Lambda等无服务器环境中使用时,需确保使用较新的Amazon Linux版本
- 部分旧版Docker镜像可能不支持TLS指纹模拟功能
- 务必设置raise_errors=True以便及时发现和处理错误
- 对于空数据返回问题,通常是由于cookie处理不当导致
未来展望
yfinance项目维护团队已计划将TLS指纹模拟功能集成到主分支中,作为默认设置。这将从根本上解决API限流问题,为用户提供更稳定的数据获取体验。
总结
面对金融数据API日益严格的反爬机制,开发者需要不断更新技术手段。通过模拟浏览器TLS指纹特征,我们能够在不违反服务条款的前提下,继续获取所需的金融数据。这一解决方案不仅适用于yfinance项目,也为其他面临类似API限流问题的项目提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
WebVideoDownloader:高效网页视频抓取工具全面使用指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
293
2.62 K
暂无简介
Dart
584
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.28 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
758
72
Ascend Extension for PyTorch
Python
123
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
409
仓颉编程语言运行时与标准库。
Cangjie
130
422