yfinance项目遭遇Yahoo Finance API限流问题的分析与解决方案
2025-05-13 03:37:39作者:凌朦慧Richard
问题背景
近期,众多开发者在使用Python金融数据获取库yfinance时遇到了严重的API限流问题。当用户尝试通过yfinance获取股票市场数据时,系统会返回"YFRateLimitError('Too Many Requests. Rate limited. Try after a while.')"错误。这一问题在2025年4月底集中爆发,影响了全球范围内的yfinance用户。
问题现象分析
该问题表现为:
- 无论使用何种IP地址,都会遭遇相同的限流错误
- 直接通过浏览器访问Yahoo Finance API却能正常工作
- 问题出现时间集中在周一/周二,暗示可能是Yahoo方面进行了企业级API变更
技术原因探究
经过开发者社区深入分析,发现根本原因在于:
Yahoo Finance近期升级了其API防护机制,采用了更先进的TLS指纹识别技术。传统的Python requests库发起的请求会被识别为非浏览器流量,从而触发限流机制。而浏览器和curl等工具由于具有不同的TLS指纹特征,仍能正常访问。
解决方案演进
初期解决方案
开发者TianqiMikeHu首先提出使用curl_cffi库来模拟浏览器TLS指纹的方案:
from curl_cffi import requests
session = requests.Session(impersonate="chrome")
ticker = yf.Ticker('...', session=session)
这种方法通过模拟Chrome浏览器的TLS指纹特征,成功绕过了Yahoo的API限流机制。
进阶解决方案
随着Yahoo进一步升级防护,开发者codyfletcher提出了更完善的解决方案,需要额外处理cookie问题:
- 安装curl_cffi库:
pip install curl_cffi
- 创建yfinance_cookie_patch.py补丁文件:
from requests.cookies import create_cookie
import yfinance.data as _data
def _wrap_cookie(cookie, session):
if isinstance(cookie, str):
value = session.cookies.get(cookie)
return create_cookie(name=cookie, value=value)
return cookie
def patch_yfdata_cookie_basic():
original = _data.YfData._get_cookie_basic
def _patched(self, proxy=None, timeout=30):
cookie = original(self, proxy, timeout)
return _wrap_cookie(cookie, self._session)
_data.YfData._get_cookie_basic = _patched
- 在主程序中使用:
import yfinance as yf
from curl_cffi import requests as curl_requests
import yfinance_cookie_patch
yfinance_cookie_patch.patch_yfdata_cookie_basic()
def main():
session = curl_requests.Session(impersonate="chrome")
ticker = yf.Ticker("AAPL", session=session)
df = ticker.history(raise_errors=True)
print(df)
注意事项
- 在AWS Lambda等无服务器环境中使用时,需确保使用较新的Amazon Linux版本
- 部分旧版Docker镜像可能不支持TLS指纹模拟功能
- 务必设置raise_errors=True以便及时发现和处理错误
- 对于空数据返回问题,通常是由于cookie处理不当导致
未来展望
yfinance项目维护团队已计划将TLS指纹模拟功能集成到主分支中,作为默认设置。这将从根本上解决API限流问题,为用户提供更稳定的数据获取体验。
总结
面对金融数据API日益严格的反爬机制,开发者需要不断更新技术手段。通过模拟浏览器TLS指纹特征,我们能够在不违反服务条款的前提下,继续获取所需的金融数据。这一解决方案不仅适用于yfinance项目,也为其他面临类似API限流问题的项目提供了参考思路。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.69 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
632
143