Full-Stack FastAPI + PostgreSQL 项目启动与配置教程
2025-04-25 02:00:02作者:廉彬冶Miranda
一、项目目录结构及介绍
本项目是基于 FastAPI 和 PostgreSQL 构建的全栈项目。以下是项目的目录结构及其说明:
full-stack-fastapi-postgresql/
│
├── app/ # 应用程序主目录
│ ├── api/ # API相关模块
│ │ ├── dependencies/ # 依赖注入模块
│ │ ├── endpoints/ # API端点模块
│ │ └── models/ # 数据模型模块
│ │
│ ├── core/ # 核心配置和工具模块
│ │ ├── config/ # 配置模块
│ │ └── security/ # 安全相关模块
│ │
│ ├── db/ # 数据库操作模块
│ │ ├── base_class/ # 数据库基类
│ │ ├── models/ # 数据库模型
│ │ └── schemas/ # 数据库模式
│ │
│ ├── main.py # 应用程序入口文件
│ └── tests/ # 测试模块
│
├── alembic/ # 数据库迁移目录
│ └── versions/ # 迁移版本文件
│
├── tests/ # 测试目录
│ ├── conftest.py # 测试配置文件
│ └── test_api/ # API测试模块
│
├── tools/ # 工具脚本目录
│ └── init_db.py # 初始化数据库脚本
│
├── requirements.txt # 项目依赖文件
└── README.md # 项目说明文件
app/: 项目的主要应用程序目录,包含了所有的业务逻辑。api/: 包含所有与API相关的代码。core/: 包含项目的核心配置,如数据库配置、安全设置等。db/: 数据库相关的模块,包括数据模型和数据库操作。main.py: 应用的入口文件,用于启动 FastAPI 应用。tests/: 测试相关的代码和配置。alembic/: 用于数据库版本控制和迁移。tools/: 放置一些辅助性工具脚本,例如数据库初始化脚本。
二、项目的启动文件介绍
项目的启动文件为 app/main.py,以下是该文件的主要内容:
from fastapi import FastAPI
from app.core.config import settings
from app.db.session import Base, engine
from app.api.endpoints import urlpatterns
# 初始化数据库
Base.metadata.create_all(bind=engine)
app = FastAPI(title=settings.PROJECT_NAME, version=settings.PROJECT_VERSION)
# 添加路由
for url in urlpatterns:
app.add_api_route(url.path, url.endpoints, **url.options)
- 首先,从配置文件中导入设置。
- 然后,使用 SQLAlchemy 的
create_all方法创建数据库表。 - 接着,创建一个 FastAPI 实例,并为其设置标题和版本。
- 最后,循环添加 API 路由。
三、项目的配置文件介绍
项目的配置文件位于 app/core/config.py,以下是配置文件的主要内容:
from pydantic import BaseSettings
from typing import Any, Dict, List, Optional
class Settings(BaseSettings):
PROJECT_NAME: str = "FastAPI Project"
PROJECT_VERSION: str = "0.1.0"
DATABASE_URL: Optional[str] = "postgresql://username:password@localhost:5432/dbname"
class Config:
env_file: str = ".env"
settings = Settings()
- 使用 Pydantic 的
BaseSettings类来定义配置。 - 包含了项目名称、版本和数据库连接字符串等配置项。
- 通过
env_file指定环境变量文件,以便可以从.env文件中加载配置。
通过以上三个部分,可以了解到本开源项目的目录结构、启动文件及其配置文件的基本情况,为后续的项目运行和开发奠定了基础。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
421
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
686
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869