Full-Stack FastAPI + PostgreSQL 项目启动与配置教程
2025-04-25 19:38:45作者:廉彬冶Miranda
一、项目目录结构及介绍
本项目是基于 FastAPI 和 PostgreSQL 构建的全栈项目。以下是项目的目录结构及其说明:
full-stack-fastapi-postgresql/
│
├── app/ # 应用程序主目录
│ ├── api/ # API相关模块
│ │ ├── dependencies/ # 依赖注入模块
│ │ ├── endpoints/ # API端点模块
│ │ └── models/ # 数据模型模块
│ │
│ ├── core/ # 核心配置和工具模块
│ │ ├── config/ # 配置模块
│ │ └── security/ # 安全相关模块
│ │
│ ├── db/ # 数据库操作模块
│ │ ├── base_class/ # 数据库基类
│ │ ├── models/ # 数据库模型
│ │ └── schemas/ # 数据库模式
│ │
│ ├── main.py # 应用程序入口文件
│ └── tests/ # 测试模块
│
├── alembic/ # 数据库迁移目录
│ └── versions/ # 迁移版本文件
│
├── tests/ # 测试目录
│ ├── conftest.py # 测试配置文件
│ └── test_api/ # API测试模块
│
├── tools/ # 工具脚本目录
│ └── init_db.py # 初始化数据库脚本
│
├── requirements.txt # 项目依赖文件
└── README.md # 项目说明文件
app/
: 项目的主要应用程序目录,包含了所有的业务逻辑。api/
: 包含所有与API相关的代码。core/
: 包含项目的核心配置,如数据库配置、安全设置等。db/
: 数据库相关的模块,包括数据模型和数据库操作。main.py
: 应用的入口文件,用于启动 FastAPI 应用。tests/
: 测试相关的代码和配置。alembic/
: 用于数据库版本控制和迁移。tools/
: 放置一些辅助性工具脚本,例如数据库初始化脚本。
二、项目的启动文件介绍
项目的启动文件为 app/main.py
,以下是该文件的主要内容:
from fastapi import FastAPI
from app.core.config import settings
from app.db.session import Base, engine
from app.api.endpoints import urlpatterns
# 初始化数据库
Base.metadata.create_all(bind=engine)
app = FastAPI(title=settings.PROJECT_NAME, version=settings.PROJECT_VERSION)
# 添加路由
for url in urlpatterns:
app.add_api_route(url.path, url.endpoints, **url.options)
- 首先,从配置文件中导入设置。
- 然后,使用 SQLAlchemy 的
create_all
方法创建数据库表。 - 接着,创建一个 FastAPI 实例,并为其设置标题和版本。
- 最后,循环添加 API 路由。
三、项目的配置文件介绍
项目的配置文件位于 app/core/config.py
,以下是配置文件的主要内容:
from pydantic import BaseSettings
from typing import Any, Dict, List, Optional
class Settings(BaseSettings):
PROJECT_NAME: str = "FastAPI Project"
PROJECT_VERSION: str = "0.1.0"
DATABASE_URL: Optional[str] = "postgresql://username:password@localhost:5432/dbname"
class Config:
env_file: str = ".env"
settings = Settings()
- 使用 Pydantic 的
BaseSettings
类来定义配置。 - 包含了项目名称、版本和数据库连接字符串等配置项。
- 通过
env_file
指定环境变量文件,以便可以从.env
文件中加载配置。
通过以上三个部分,可以了解到本开源项目的目录结构、启动文件及其配置文件的基本情况,为后续的项目运行和开发奠定了基础。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133