MMRotate项目中NaN损失问题的分析与解决方案
2025-07-05 09:40:04作者:庞队千Virginia
问题背景
在使用MMRotate项目进行旋转目标检测训练时,部分用户遇到了损失值变为NaN的问题。这一问题主要出现在DIOR数据集上训练Oriented R-CNN、S2ANet和R3Det等模型时,而在DOTAv1.0和DOTA1.5数据集上则表现正常。
问题表现
训练过程中,通常在epoch 7左右会出现损失值变为NaN的情况,导致训练无法继续进行。这一问题在MMRotate 1.0.0rc1版本中较为常见,而在0.3.4版本中则较少出现。
可能原因分析
- 数据集质量问题:DIOR数据集中可能存在"脏数据",即不符合模型训练要求的标注数据
- 版本兼容性问题:MMRotate 1.0.0rc1版本可能存在某些bug
- 训练参数设置问题:如batch size、学习率等超参数设置不当
- GPU兼容性问题:不同GPU型号对浮点运算精度的支持不同
解决方案
1. 数据集清洗
按照MMRotate官方建议,对数据集进行以下检查和处理:
- 确保所有标注框的宽度和高度均为正值
- 检查是否有无效的旋转角度值
- 移除或修正不符合物理意义的标注框(如面积过小或长宽比异常)
2. 版本降级
将MMRotate版本降级至0.3.4可以解决此问题。这一方案简单有效,但可能无法使用最新版本的功能。
3. 训练参数调整
尝试以下参数调整:
- 减小batch size(如从16降至2)
- 降低学习率
- 避免使用FP16半精度训练
- 增加梯度裁剪
4. 其他建议
- 检查GPU驱动和CUDA版本是否兼容
- 监控训练过程中的梯度变化,及时发现数值不稳定问题
- 在训练初期使用较小的输入尺寸,逐步增大
技术原理
损失值变为NaN通常是由于数值计算不稳定导致的,可能原因包括:
- 梯度爆炸:反向传播过程中梯度值过大
- 除零错误:在计算过程中出现了除以零的情况
- 数值溢出:计算结果超出了浮点数表示范围
- 无效输入:模型接收到了不符合预期的输入数据
在旋转目标检测任务中,由于涉及角度计算和旋转矩阵运算,数值稳定性问题更容易出现。特别是在处理某些特殊角度的边界情况时,三角函数计算可能导致数值不稳定。
最佳实践建议
- 数据预处理:在训练前对数据集进行全面检查,确保所有标注数据符合物理意义
- 版本选择:根据实际需求选择合适的MMRotate版本,新版本不一定总是最佳选择
- 监控机制:实现训练过程监控,在损失出现异常时能够及时保存模型状态
- 逐步调试:从小规模数据开始训练,验证模型和参数设置的合理性
通过以上措施,可以有效避免或解决MMRotate训练过程中出现的NaN损失问题,确保模型训练的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
243
2.4 K
React Native鸿蒙化仓库
JavaScript
216
291
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.59 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
405
暂无简介
Dart
540
118
仓颉编程语言运行时与标准库。
Cangjie
123
99
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1 K
591
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
592
116