MMRotate项目中NaN损失问题的分析与解决方案
2025-07-05 03:19:01作者:庞队千Virginia
问题背景
在使用MMRotate项目进行旋转目标检测训练时,部分用户遇到了损失值变为NaN的问题。这一问题主要出现在DIOR数据集上训练Oriented R-CNN、S2ANet和R3Det等模型时,而在DOTAv1.0和DOTA1.5数据集上则表现正常。
问题表现
训练过程中,通常在epoch 7左右会出现损失值变为NaN的情况,导致训练无法继续进行。这一问题在MMRotate 1.0.0rc1版本中较为常见,而在0.3.4版本中则较少出现。
可能原因分析
- 数据集质量问题:DIOR数据集中可能存在"脏数据",即不符合模型训练要求的标注数据
- 版本兼容性问题:MMRotate 1.0.0rc1版本可能存在某些bug
- 训练参数设置问题:如batch size、学习率等超参数设置不当
- GPU兼容性问题:不同GPU型号对浮点运算精度的支持不同
解决方案
1. 数据集清洗
按照MMRotate官方建议,对数据集进行以下检查和处理:
- 确保所有标注框的宽度和高度均为正值
- 检查是否有无效的旋转角度值
- 移除或修正不符合物理意义的标注框(如面积过小或长宽比异常)
2. 版本降级
将MMRotate版本降级至0.3.4可以解决此问题。这一方案简单有效,但可能无法使用最新版本的功能。
3. 训练参数调整
尝试以下参数调整:
- 减小batch size(如从16降至2)
- 降低学习率
- 避免使用FP16半精度训练
- 增加梯度裁剪
4. 其他建议
- 检查GPU驱动和CUDA版本是否兼容
- 监控训练过程中的梯度变化,及时发现数值不稳定问题
- 在训练初期使用较小的输入尺寸,逐步增大
技术原理
损失值变为NaN通常是由于数值计算不稳定导致的,可能原因包括:
- 梯度爆炸:反向传播过程中梯度值过大
- 除零错误:在计算过程中出现了除以零的情况
- 数值溢出:计算结果超出了浮点数表示范围
- 无效输入:模型接收到了不符合预期的输入数据
在旋转目标检测任务中,由于涉及角度计算和旋转矩阵运算,数值稳定性问题更容易出现。特别是在处理某些特殊角度的边界情况时,三角函数计算可能导致数值不稳定。
最佳实践建议
- 数据预处理:在训练前对数据集进行全面检查,确保所有标注数据符合物理意义
- 版本选择:根据实际需求选择合适的MMRotate版本,新版本不一定总是最佳选择
- 监控机制:实现训练过程监控,在损失出现异常时能够及时保存模型状态
- 逐步调试:从小规模数据开始训练,验证模型和参数设置的合理性
通过以上措施,可以有效避免或解决MMRotate训练过程中出现的NaN损失问题,确保模型训练的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
155
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
241
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K