MMRotate项目中NaN损失问题的分析与解决方案
2025-07-05 03:19:01作者:庞队千Virginia
问题背景
在使用MMRotate项目进行旋转目标检测训练时,部分用户遇到了损失值变为NaN的问题。这一问题主要出现在DIOR数据集上训练Oriented R-CNN、S2ANet和R3Det等模型时,而在DOTAv1.0和DOTA1.5数据集上则表现正常。
问题表现
训练过程中,通常在epoch 7左右会出现损失值变为NaN的情况,导致训练无法继续进行。这一问题在MMRotate 1.0.0rc1版本中较为常见,而在0.3.4版本中则较少出现。
可能原因分析
- 数据集质量问题:DIOR数据集中可能存在"脏数据",即不符合模型训练要求的标注数据
- 版本兼容性问题:MMRotate 1.0.0rc1版本可能存在某些bug
- 训练参数设置问题:如batch size、学习率等超参数设置不当
- GPU兼容性问题:不同GPU型号对浮点运算精度的支持不同
解决方案
1. 数据集清洗
按照MMRotate官方建议,对数据集进行以下检查和处理:
- 确保所有标注框的宽度和高度均为正值
- 检查是否有无效的旋转角度值
- 移除或修正不符合物理意义的标注框(如面积过小或长宽比异常)
2. 版本降级
将MMRotate版本降级至0.3.4可以解决此问题。这一方案简单有效,但可能无法使用最新版本的功能。
3. 训练参数调整
尝试以下参数调整:
- 减小batch size(如从16降至2)
- 降低学习率
- 避免使用FP16半精度训练
- 增加梯度裁剪
4. 其他建议
- 检查GPU驱动和CUDA版本是否兼容
- 监控训练过程中的梯度变化,及时发现数值不稳定问题
- 在训练初期使用较小的输入尺寸,逐步增大
技术原理
损失值变为NaN通常是由于数值计算不稳定导致的,可能原因包括:
- 梯度爆炸:反向传播过程中梯度值过大
- 除零错误:在计算过程中出现了除以零的情况
- 数值溢出:计算结果超出了浮点数表示范围
- 无效输入:模型接收到了不符合预期的输入数据
在旋转目标检测任务中,由于涉及角度计算和旋转矩阵运算,数值稳定性问题更容易出现。特别是在处理某些特殊角度的边界情况时,三角函数计算可能导致数值不稳定。
最佳实践建议
- 数据预处理:在训练前对数据集进行全面检查,确保所有标注数据符合物理意义
- 版本选择:根据实际需求选择合适的MMRotate版本,新版本不一定总是最佳选择
- 监控机制:实现训练过程监控,在损失出现异常时能够及时保存模型状态
- 逐步调试:从小规模数据开始训练,验证模型和参数设置的合理性
通过以上措施,可以有效避免或解决MMRotate训练过程中出现的NaN损失问题,确保模型训练的顺利进行。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
309
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.84 K
React Native鸿蒙化仓库
JavaScript
259
322