Compact Encoding Detection (CED) 开源项目教程
2024-09-25 15:31:09作者:晏闻田Solitary
1. 项目介绍
Compact Encoding Detection (CED) 是一个由 Google 开发的 C++ 库,旨在通过扫描给定的原始字节数据来检测最可能的文本编码。该库特别适用于需要自动检测文本编码的场景,如网页抓取、数据处理等。CED 的核心功能是通过分析字节流的模式来推断文本的编码类型,支持多种常见的编码格式。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下工具:
- CMake
- Git
2.2 下载项目
首先,从 GitHub 上克隆项目到本地:
git clone https://github.com/google/compact_enc_det.git
cd compact_enc_det
2.3 构建项目
运行以下命令来构建项目:
./autogen.sh
该脚本会自动下载所需的依赖并构建项目。
2.4 运行示例代码
以下是一个简单的示例代码,展示如何使用 CED 库来检测文本的编码:
#include "compact_enc_det/compact_enc_det.h"
#include <iostream>
int main() {
const char* text = "Input text";
bool is_reliable;
int bytes_consumed;
Encoding encoding = CompactEncDet::DetectEncoding(
text, strlen(text), nullptr, nullptr, nullptr,
UNKNOWN_ENCODING, UNKNOWN_LANGUAGE, CompactEncDet::WEB_CORPUS,
false, &bytes_consumed, &is_reliable);
std::cout << "Detected encoding: " << MimeEncodingName(encoding) << std::endl;
return 0;
}
编译并运行该示例代码:
g++ -o detect_encoding detect_encoding.cpp -I./ -L./ -lcompact_enc_det
./detect_encoding
3. 应用案例和最佳实践
3.1 网页抓取
在网页抓取过程中,文本的编码格式可能多种多样。使用 CED 可以自动检测网页的编码格式,从而确保正确解析网页内容。
3.2 数据处理
在处理来自不同来源的数据时,文本的编码格式可能不一致。CED 可以帮助识别数据的编码格式,从而进行统一的处理和转换。
3.3 最佳实践
- 批量处理:在处理大量文本数据时,建议使用批量处理的方式,以提高效率。
- 错误处理:在实际应用中,应考虑编码检测失败的情况,并提供相应的错误处理机制。
4. 典型生态项目
4.1 Node.js 绑定
- 项目名称:ced
- GitHub 地址:https://github.com/sonicdoe/ced
4.2 Ruby 绑定
- 项目名称:compact_enc_det
- GitHub 地址:https://github.com/cloudaper/compact_enc_det
这些生态项目为不同编程语言提供了 CED 的接口,方便开发者在不同环境中使用 CED 进行编码检测。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355