RT-DETR模型TensorRT推理坐标输出为零的解决方案
问题背景
在使用RT-DETR模型进行目标检测时,开发者可能会遇到一个常见问题:当将训练好的ONNX模型转换为TensorRT引擎后,推理时输出的边界框坐标全部为零值。这种情况会导致检测结果无法正确显示,严重影响模型的实际应用效果。
问题分析
通过分析问题现象和技术交流,我们发现这个问题的根源在于输入张量的数据类型处理不当。具体来说,当使用TensorRT进行推理时,模型对输入张量的数据类型有严格要求,特别是对于"orig_target_sizes"这个输入参数。
关键发现
在原始代码中,开发者使用了以下方式准备输入数据:
blob = {
"images": resized_img,
"orig_target_sizes": torch.tensor([[640,640]]).to("cuda:0", non_blocking=True)
}
这种写法虽然将张量转移到了GPU上,但没有明确指定数据类型。TensorRT引擎期望"orig_target_sizes"参数是int32类型,而默认情况下PyTorch创建的张量可能是float32或其他类型,这就导致了类型不匹配的问题。
解决方案
正确的做法是显式指定张量的数据类型为torch.int32,同时确保张量位于正确的设备上。修改后的代码如下:
blob = {
"images": resized_img,
"orig_target_sizes": torch.tensor([[640,640]]).to(
device="cuda:0",
dtype=torch.int32,
non_blocking=True
)
}
技术要点
-
数据类型一致性:在深度学习推理中,确保输入张量的数据类型与模型预期完全一致至关重要。TensorRT对数据类型的要求尤其严格。
-
设备转移:除了数据类型,还需要确保张量位于正确的计算设备上(CPU或GPU)。
-
非阻塞传输:使用non_blocking=True可以提高数据传输效率,特别是在流水线操作中。
最佳实践建议
-
在转换模型到TensorRT时,仔细检查所有输入节点的数据类型要求。
-
使用工具如Netron可视化ONNX模型,查看各节点的输入输出规格。
-
在推理代码中添加类型检查断言,确保输入数据的正确性。
-
对于RT-DETR这类复杂模型,建议逐步验证各阶段的输出,从预处理到后处理,确保整个流程的正确性。
结论
通过明确指定输入张量的数据类型为int32,我们成功解决了RT-DETR模型在TensorRT推理中输出坐标为零的问题。这个案例提醒我们,在深度学习模型部署过程中,数据类型的正确处理是一个需要特别注意的关键细节。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00