UnbalancedDataset项目与scikit-learn 1.4兼容性问题分析
UnbalancedDataset(即imbalanced-learn)是一个用于处理不平衡数据集的Python库,它扩展了scikit-learn的功能。近期在Debian和Fedora等Linux发行版中,当scikit-learn升级到1.4版本后,imbalanced-learn 0.12.0的测试套件出现了兼容性问题。
问题的核心在于scikit-learn 1.4改变了属性错误消息的格式。具体来说,当尝试访问管道(Pipeline)对象中不存在的属性时,错误消息的格式发生了变化。在scikit-learn 1.4之前,错误消息会直接显示底层估计器缺少某个属性;而在1.4版本中,错误消息改为明确指出管道对象缺少该属性。
这种变化影响了imbalanced-learn测试套件中的两个测试用例:
test_fit_predict_on_pipeline_without_fit_predicttest_score_samples_on_pipeline_without_score_samples
这两个测试原本期望的错误消息格式是"'PCA'对象没有'fit_predict'属性"或"'LogisticRegression'对象没有'score_samples'属性",但scikit-learn 1.4实际返回的是"'Pipeline'对象没有'fit_predict'属性"或"'Pipeline'对象没有'score_samples'属性"。
解决方案相对简单,只需更新测试用例中的错误消息匹配模式即可。具体修改包括将错误消息的正则表达式从指向底层估计器的错误改为指向管道对象的错误。这种修改不会影响实际功能,只是测试断言需要适应scikit-learn的新错误消息格式。
这个问题很好地展示了依赖管理在开源生态系统中的重要性。当一个广泛使用的库(如scikit-learn)改变其内部实现细节时,即使是错误消息格式这样的微小变化,也可能影响依赖它的其他库。对于库开发者来说,保持测试套件的灵活性以应对上游依赖的变化是一个值得注意的最佳实践。
对于使用imbalanced-learn的用户来说,这个问题不会影响实际使用体验,因为它只涉及测试套件。不过,Linux发行版的打包者需要应用这个补丁才能成功构建软件包。这个问题也提醒我们,在升级主要依赖项时,需要全面测试依赖它的所有软件包。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00