UnbalancedDataset项目与scikit-learn 1.4兼容性问题分析
UnbalancedDataset(即imbalanced-learn)是一个用于处理不平衡数据集的Python库,它扩展了scikit-learn的功能。近期在Debian和Fedora等Linux发行版中,当scikit-learn升级到1.4版本后,imbalanced-learn 0.12.0的测试套件出现了兼容性问题。
问题的核心在于scikit-learn 1.4改变了属性错误消息的格式。具体来说,当尝试访问管道(Pipeline)对象中不存在的属性时,错误消息的格式发生了变化。在scikit-learn 1.4之前,错误消息会直接显示底层估计器缺少某个属性;而在1.4版本中,错误消息改为明确指出管道对象缺少该属性。
这种变化影响了imbalanced-learn测试套件中的两个测试用例:
test_fit_predict_on_pipeline_without_fit_predict
test_score_samples_on_pipeline_without_score_samples
这两个测试原本期望的错误消息格式是"'PCA'对象没有'fit_predict'属性"或"'LogisticRegression'对象没有'score_samples'属性",但scikit-learn 1.4实际返回的是"'Pipeline'对象没有'fit_predict'属性"或"'Pipeline'对象没有'score_samples'属性"。
解决方案相对简单,只需更新测试用例中的错误消息匹配模式即可。具体修改包括将错误消息的正则表达式从指向底层估计器的错误改为指向管道对象的错误。这种修改不会影响实际功能,只是测试断言需要适应scikit-learn的新错误消息格式。
这个问题很好地展示了依赖管理在开源生态系统中的重要性。当一个广泛使用的库(如scikit-learn)改变其内部实现细节时,即使是错误消息格式这样的微小变化,也可能影响依赖它的其他库。对于库开发者来说,保持测试套件的灵活性以应对上游依赖的变化是一个值得注意的最佳实践。
对于使用imbalanced-learn的用户来说,这个问题不会影响实际使用体验,因为它只涉及测试套件。不过,Linux发行版的打包者需要应用这个补丁才能成功构建软件包。这个问题也提醒我们,在升级主要依赖项时,需要全面测试依赖它的所有软件包。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









