Higress监控数据对接VictoriaMetrics问题排查指南
问题背景
在使用Higress 2.0.0版本与VictoriaMetrics(vm) latest版本进行监控数据对接时,用户发现Grafana仪表板无法正常显示Higress网关的监控数据。具体表现为gateway变量无值、QPS指标匹配异常以及Upstream Success Rate指标中缺少非2xx响应码数据。
问题现象分析
-
Gateway变量无值:Grafana仪表板中的gateway变量无法获取到有效值,导致大部分监控项无法显示数据。通过检查原始Prometheus接口数据,发现确实缺少higress相关标签。
-
QPS指标匹配问题:集群名称格式与仪表板预设的正则表达式
outbound_([0-9]+)_(.*)_(.*)$不匹配,导致无法正确计算QPS指标。 -
响应码数据不全:Upstream Success Rate指标中只包含2xx响应码数据,缺少其他响应码(如4xx、5xx)的数据,影响服务健康状态的全面评估。
根本原因
经过深入分析,发现问题的核心在于VictoriaMetrics(vm)的配置方式。与原生Prometheus不同,vm需要显式配置才能正确采集和保留Pod的所有标签信息。在默认配置下,vm不会自动包含Pod的所有标签,导致仪表板无法通过标签筛选和匹配数据。
解决方案
-
调整vm采集配置:需要修改vmagent的配置,确保在采集Higress网关指标时包含所有Pod标签。可以通过以下方式实现:
- 在vmagent的job配置中添加
honor_labels: true选项 - 配置适当的relabel规则保留必要的Pod标签
- 在vmagent的job配置中添加
-
更新仪表板配置:对于QPS指标匹配问题,需要根据实际的集群名称格式调整仪表板中的正则表达式,确保能够正确匹配Higress生成的指标名称。
-
验证数据采集:配置完成后,应直接访问Higress网关的Prometheus接口,验证原始数据中是否包含完整的标签和指标信息。
最佳实践建议
-
版本兼容性检查:确保使用的Higress版本与监控仪表板版本相匹配,不同版本间的指标定义可能存在差异。
-
监控系统配置验证:在对接第三方监控系统时,应先验证基础指标是否能够正确采集,再逐步完善仪表板配置。
-
标签保留策略:对于基于Kubernetes的监控场景,建议始终保留Pod的基本标签(如app、instance等),这些标签通常用于服务发现和指标关联。
-
指标完整性检查:部署完成后,应检查关键指标(如请求量、错误率、延迟等)是否完整,确保监控系统能够全面反映服务状态。
总结
Higress与VictoriaMetrics的监控数据对接问题主要源于标签采集配置的差异。通过合理配置vmagent的标签保留策略和调整仪表板的指标匹配规则,可以解决大部分监控数据缺失问题。在实际生产环境中,建议在部署前充分测试监控系统的各项功能,确保能够及时发现并解决类似问题。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00