ONNXRuntime 自定义算子实现多输出类型支持的技术解析
2025-05-13 00:59:42作者:冯爽妲Honey
概述
在深度学习推理引擎ONNXRuntime中,自定义算子的实现是一个常见需求。本文将深入探讨如何在ONNXRuntime中实现一个类似标准Cast算子的自定义算子,该算子能够根据属性参数动态决定输出张量的数据类型。
自定义算子的基本实现方式
ONNXRuntime提供了两种主要方式来实现自定义算子:
- 轻量级方式:使用
CreateLiteCustomOp模板函数创建算子 - 完整控制方式:继承
CustomOpBase类实现完整控制
在简单场景下,轻量级方式更为便捷,但当需要更复杂的类型推断和行为控制时,完整控制方式更为适合。
多输出类型支持的技术挑战
实现一个支持多种输出类型的自定义算子面临以下技术难点:
- 类型推断机制:ONNXRuntime在算子注册阶段需要明确输入输出类型
- 内核调度逻辑:运行时需要根据属性参数选择正确的计算内核
- 内存管理兼容性:不同数据类型需要不同的内存处理方式
解决方案实现
1. 使用CustomOpBase实现类型推断
通过重写InferOutputShape方法,可以实现动态类型推断:
static OrtStatusPtr InferOutputShape(Ort::ShapeInferContext& context) {
// 从属性中获取目标数据类型
auto to = context.GetAttrInt("to");
// 验证输入类型
if(to != ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE) {
return Ort::Status("不支持的输出类型", ORT_INVALID_ARGUMENT).release();
}
// 获取输入形状并设置输出形状和类型
auto shape = context.GetInputShape(0);
context.SetOutputShape(0, shape, ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE);
return nullptr;
}
2. 内核实现要点
内核实现需要注意以下几点:
- 属性访问:在构造函数中获取并存储属性值
- 类型安全:确保计算函数处理正确的数据类型
- 错误处理:使用WithStatus模板参数启用状态返回机制
struct CustomCastKernel {
int32_t target_type_;
CustomCastKernel(const OrtApi& ort_api, const OrtKernelInfo* info)
: ort_(ort_api) {
// 获取目标类型属性
OrtStatus* status = ort_.KernelInfoGetAttribute_int64(
info, "to", &target_type_);
if(status != nullptr) {
// 处理属性获取错误
}
}
OrtStatusPtr ComputeV2(OrtKernelContext* context) {
// 根据target_type_执行相应的类型转换
// ...
}
};
最佳实践建议
- 类型推断明确性:虽然可以使用UNDEFINED类型,但明确指定支持的类型范围更安全
- 错误处理完善性:实现全面的错误检查和状态返回
- 性能考量:对于高频调用的算子,考虑使用模板特化优化性能
- 版本兼容性:合理设置算子版本范围(start_ver_和end_ver_)
常见问题解决
在实现过程中可能会遇到以下问题:
- 类型不匹配错误:确保InferOutputShape正确设置输出类型
- 属性访问失败:检查属性名称拼写和类型
- 内存访问违规:验证所有指针访问的安全性
- 算子注册冲突:避免与内置算子命名冲突
总结
在ONNXRuntime中实现支持多输出类型的自定义算子需要深入理解其类型系统和算子调度机制。通过合理使用CustomOpBase类和实现正确的类型推断逻辑,可以构建出灵活且高效的自定义算子。本文介绍的方法不仅适用于Cast类算子,也可推广到其他需要动态输出类型的场景。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111