ONNXRuntime 自定义算子实现多输出类型支持的技术解析
2025-05-13 02:45:31作者:冯爽妲Honey
概述
在深度学习推理引擎ONNXRuntime中,自定义算子的实现是一个常见需求。本文将深入探讨如何在ONNXRuntime中实现一个类似标准Cast算子的自定义算子,该算子能够根据属性参数动态决定输出张量的数据类型。
自定义算子的基本实现方式
ONNXRuntime提供了两种主要方式来实现自定义算子:
- 轻量级方式:使用
CreateLiteCustomOp模板函数创建算子 - 完整控制方式:继承
CustomOpBase类实现完整控制
在简单场景下,轻量级方式更为便捷,但当需要更复杂的类型推断和行为控制时,完整控制方式更为适合。
多输出类型支持的技术挑战
实现一个支持多种输出类型的自定义算子面临以下技术难点:
- 类型推断机制:ONNXRuntime在算子注册阶段需要明确输入输出类型
- 内核调度逻辑:运行时需要根据属性参数选择正确的计算内核
- 内存管理兼容性:不同数据类型需要不同的内存处理方式
解决方案实现
1. 使用CustomOpBase实现类型推断
通过重写InferOutputShape方法,可以实现动态类型推断:
static OrtStatusPtr InferOutputShape(Ort::ShapeInferContext& context) {
// 从属性中获取目标数据类型
auto to = context.GetAttrInt("to");
// 验证输入类型
if(to != ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE) {
return Ort::Status("不支持的输出类型", ORT_INVALID_ARGUMENT).release();
}
// 获取输入形状并设置输出形状和类型
auto shape = context.GetInputShape(0);
context.SetOutputShape(0, shape, ONNX_TENSOR_ELEMENT_DATA_TYPE_DOUBLE);
return nullptr;
}
2. 内核实现要点
内核实现需要注意以下几点:
- 属性访问:在构造函数中获取并存储属性值
- 类型安全:确保计算函数处理正确的数据类型
- 错误处理:使用WithStatus模板参数启用状态返回机制
struct CustomCastKernel {
int32_t target_type_;
CustomCastKernel(const OrtApi& ort_api, const OrtKernelInfo* info)
: ort_(ort_api) {
// 获取目标类型属性
OrtStatus* status = ort_.KernelInfoGetAttribute_int64(
info, "to", &target_type_);
if(status != nullptr) {
// 处理属性获取错误
}
}
OrtStatusPtr ComputeV2(OrtKernelContext* context) {
// 根据target_type_执行相应的类型转换
// ...
}
};
最佳实践建议
- 类型推断明确性:虽然可以使用UNDEFINED类型,但明确指定支持的类型范围更安全
- 错误处理完善性:实现全面的错误检查和状态返回
- 性能考量:对于高频调用的算子,考虑使用模板特化优化性能
- 版本兼容性:合理设置算子版本范围(start_ver_和end_ver_)
常见问题解决
在实现过程中可能会遇到以下问题:
- 类型不匹配错误:确保InferOutputShape正确设置输出类型
- 属性访问失败:检查属性名称拼写和类型
- 内存访问违规:验证所有指针访问的安全性
- 算子注册冲突:避免与内置算子命名冲突
总结
在ONNXRuntime中实现支持多输出类型的自定义算子需要深入理解其类型系统和算子调度机制。通过合理使用CustomOpBase类和实现正确的类型推断逻辑,可以构建出灵活且高效的自定义算子。本文介绍的方法不仅适用于Cast类算子,也可推广到其他需要动态输出类型的场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
649
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
649