Ragas项目中的自定义评估指标实现指南
2025-05-26 21:35:35作者:何将鹤
Ragas作为一个评估RAG(检索增强生成)系统性能的开源框架,提供了多种内置评估指标。但在实际应用中,开发者可能需要根据特定需求创建自定义评估指标。本文将详细介绍在Ragas中实现自定义评估指标的技术方案。
自定义评估指标的基本原理
Ragas框架设计时就考虑了扩展性,开发者可以通过继承基础类来创建自定义指标。框架提供了三个基础类供继承:
- Metric类:最基础的指标类,适用于不需要LLM或嵌入模型的简单指标
- MetricWithLLM类:需要语言模型参与的指标
- MetricWithEmbeddings类:需要嵌入模型的指标
实现自定义指标的步骤
以下是一个实现简单指标(计算答案长度)的完整示例:
import typing as t
from datasets import Dataset
from ragas import evaluate
from ragas.metrics.base import Metric, EvaluationMode
from langchain_core.callbacks import Callbacks
from ragas.run_config import RunConfig
class AnswerLength(Metric):
"""计算答案长度的自定义指标示例"""
name: str = "answer_length"
evaluation_mode: EvaluationMode = EvaluationMode.qa
async def _ascore(
self: t.Self, row: t.Dict, callbacks: Callbacks, is_async: bool
) -> float:
return len(row["answer"])
def init(self, run_config: RunConfig):
"""初始化方法"""
pass
# 使用自定义指标
answer_length = AnswerLength()
data_samples = {
'question': ['问题1', '问题2'],
'answer': ['答案1', '更长的答案2'],
}
dataset = Dataset.from_dict(data_samples)
score = evaluate(dataset, metrics=[answer_length])
关键实现要点
-
类属性定义:
name:指标的唯一标识符evaluation_mode:指定指标适用的评估模式(如qa模式)
-
核心评分方法:
_ascore方法是异步的,必须实现- 接收数据行、回调函数和异步标志作为参数
- 返回一个浮点数评分
-
初始化方法:
init方法用于初始化指标需要的资源- 接收运行配置参数
最佳实践建议
-
指标选择:
- 优先考虑使用Ragas内置指标,它们经过充分验证
- 自定义指标适用于特殊业务场景或研究需求
-
实现注意事项:
- 保持评分逻辑简单明确
- 考虑指标的稳定性和可解释性
- 异步实现确保性能
-
测试验证:
- 对自定义指标进行充分测试
- 验证指标输出范围是否符合预期(通常0-1区间)
高级应用场景
对于更复杂的指标,如需要语言模型参与的指标,可以继承MetricWithLLM类。这类指标可以实现:
- 基于LLM的答案质量评估
- 复杂语义分析
- 多维度评分
Ragas框架的这种设计使得开发者能够灵活扩展评估能力,同时保持与核心框架的无缝集成。随着项目发展,自定义指标功能将会得到更完善的文档支持和稳定性保证。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C064
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.41 K
Ascend Extension for PyTorch
Python
264
296
暂无简介
Dart
709
169
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
176
64
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
412
React Native鸿蒙化仓库
JavaScript
284
331
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
689
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
420
130