Ragas项目中的自定义评估指标实现指南
2025-05-26 03:53:19作者:何将鹤
Ragas作为一个评估RAG(检索增强生成)系统性能的开源框架,提供了多种内置评估指标。但在实际应用中,开发者可能需要根据特定需求创建自定义评估指标。本文将详细介绍在Ragas中实现自定义评估指标的技术方案。
自定义评估指标的基本原理
Ragas框架设计时就考虑了扩展性,开发者可以通过继承基础类来创建自定义指标。框架提供了三个基础类供继承:
- Metric类:最基础的指标类,适用于不需要LLM或嵌入模型的简单指标
- MetricWithLLM类:需要语言模型参与的指标
- MetricWithEmbeddings类:需要嵌入模型的指标
实现自定义指标的步骤
以下是一个实现简单指标(计算答案长度)的完整示例:
import typing as t
from datasets import Dataset
from ragas import evaluate
from ragas.metrics.base import Metric, EvaluationMode
from langchain_core.callbacks import Callbacks
from ragas.run_config import RunConfig
class AnswerLength(Metric):
"""计算答案长度的自定义指标示例"""
name: str = "answer_length"
evaluation_mode: EvaluationMode = EvaluationMode.qa
async def _ascore(
self: t.Self, row: t.Dict, callbacks: Callbacks, is_async: bool
) -> float:
return len(row["answer"])
def init(self, run_config: RunConfig):
"""初始化方法"""
pass
# 使用自定义指标
answer_length = AnswerLength()
data_samples = {
'question': ['问题1', '问题2'],
'answer': ['答案1', '更长的答案2'],
}
dataset = Dataset.from_dict(data_samples)
score = evaluate(dataset, metrics=[answer_length])
关键实现要点
-
类属性定义:
name:指标的唯一标识符evaluation_mode:指定指标适用的评估模式(如qa模式)
-
核心评分方法:
_ascore方法是异步的,必须实现- 接收数据行、回调函数和异步标志作为参数
- 返回一个浮点数评分
-
初始化方法:
init方法用于初始化指标需要的资源- 接收运行配置参数
最佳实践建议
-
指标选择:
- 优先考虑使用Ragas内置指标,它们经过充分验证
- 自定义指标适用于特殊业务场景或研究需求
-
实现注意事项:
- 保持评分逻辑简单明确
- 考虑指标的稳定性和可解释性
- 异步实现确保性能
-
测试验证:
- 对自定义指标进行充分测试
- 验证指标输出范围是否符合预期(通常0-1区间)
高级应用场景
对于更复杂的指标,如需要语言模型参与的指标,可以继承MetricWithLLM类。这类指标可以实现:
- 基于LLM的答案质量评估
- 复杂语义分析
- 多维度评分
Ragas框架的这种设计使得开发者能够灵活扩展评估能力,同时保持与核心框架的无缝集成。随着项目发展,自定义指标功能将会得到更完善的文档支持和稳定性保证。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
879