Ragas项目中的自定义评估指标实现指南
2025-05-26 07:57:11作者:何将鹤
Ragas作为一个评估RAG(检索增强生成)系统性能的开源框架,提供了多种内置评估指标。但在实际应用中,开发者可能需要根据特定需求创建自定义评估指标。本文将详细介绍在Ragas中实现自定义评估指标的技术方案。
自定义评估指标的基本原理
Ragas框架设计时就考虑了扩展性,开发者可以通过继承基础类来创建自定义指标。框架提供了三个基础类供继承:
- Metric类:最基础的指标类,适用于不需要LLM或嵌入模型的简单指标
- MetricWithLLM类:需要语言模型参与的指标
- MetricWithEmbeddings类:需要嵌入模型的指标
实现自定义指标的步骤
以下是一个实现简单指标(计算答案长度)的完整示例:
import typing as t
from datasets import Dataset
from ragas import evaluate
from ragas.metrics.base import Metric, EvaluationMode
from langchain_core.callbacks import Callbacks
from ragas.run_config import RunConfig
class AnswerLength(Metric):
"""计算答案长度的自定义指标示例"""
name: str = "answer_length"
evaluation_mode: EvaluationMode = EvaluationMode.qa
async def _ascore(
self: t.Self, row: t.Dict, callbacks: Callbacks, is_async: bool
) -> float:
return len(row["answer"])
def init(self, run_config: RunConfig):
"""初始化方法"""
pass
# 使用自定义指标
answer_length = AnswerLength()
data_samples = {
'question': ['问题1', '问题2'],
'answer': ['答案1', '更长的答案2'],
}
dataset = Dataset.from_dict(data_samples)
score = evaluate(dataset, metrics=[answer_length])
关键实现要点
-
类属性定义:
name:指标的唯一标识符evaluation_mode:指定指标适用的评估模式(如qa模式)
-
核心评分方法:
_ascore方法是异步的,必须实现- 接收数据行、回调函数和异步标志作为参数
- 返回一个浮点数评分
-
初始化方法:
init方法用于初始化指标需要的资源- 接收运行配置参数
最佳实践建议
-
指标选择:
- 优先考虑使用Ragas内置指标,它们经过充分验证
- 自定义指标适用于特殊业务场景或研究需求
-
实现注意事项:
- 保持评分逻辑简单明确
- 考虑指标的稳定性和可解释性
- 异步实现确保性能
-
测试验证:
- 对自定义指标进行充分测试
- 验证指标输出范围是否符合预期(通常0-1区间)
高级应用场景
对于更复杂的指标,如需要语言模型参与的指标,可以继承MetricWithLLM类。这类指标可以实现:
- 基于LLM的答案质量评估
- 复杂语义分析
- 多维度评分
Ragas框架的这种设计使得开发者能够灵活扩展评估能力,同时保持与核心框架的无缝集成。随着项目发展,自定义指标功能将会得到更完善的文档支持和稳定性保证。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
269
2.54 K
暂无简介
Dart
558
124
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
57
11
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
126
104
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
357
1.84 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
434
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
605
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
728
70