Harvester项目中Ceph RBD卷多节点访问模式问题解析
2025-06-14 02:42:19作者:蔡丛锟
在Harvester项目使用过程中,用户遇到了一个关于Ceph RBD存储卷配置的技术问题。本文将深入分析该问题的成因、解决方案以及相关技术背景。
问题现象
当用户尝试通过Harvester UI下载镜像时,系统无法成功创建临时存储卷。检查相关日志发现,持久化卷声明(PVC)一直处于Pending状态,错误信息显示"multi node access modes are only supported on rbd block type volumes"。
从技术细节来看,用户配置的PVC具有以下关键特征:
- 访问模式设置为ReadWriteMany(RWX)
- 存储类为rook-ceph-block
- 卷模式为Block
- 使用了CDI(Containerized Data Importer)进行数据导入
问题根源分析
经过排查,发现问题源于设备权限配置。具体来说,Harvester项目在某个提交中已经修复了设备所有权从安全上下文(device_ownership_from_security_context)的相关问题。但在用户环境中,由于采用了基于Chart的自定义部署方式,而非标准ISO安装,导致这一关键配置未被正确应用。
技术背景
Ceph RBD卷的多节点访问模式有其特定的技术要求:
- 块设备(Block)类型的RBD卷才支持多节点访问模式
- 需要正确的设备权限配置
- 安全上下文中的设备所有权设置必须正确
在Kubernetes环境中,这些要求通过CSI驱动和存储类配置来实现。当这些配置不匹配时,就会出现上述错误。
解决方案
针对这一问题,Harvester项目团队已经提供了官方修复方案。用户可以采用以下任一方法解决:
- 使用包含修复的Harvester ISO进行安装
- 在自定义部署中手动应用相关配置变更,特别是确保device_ownership_from_security_context设置正确
最佳实践建议
为避免类似问题,建议Harvester用户:
- 优先使用官方发布的ISO进行部署
- 如需自定义部署,应仔细检查所有存储相关配置
- 定期关注项目更新,及时应用重要修复
- 在配置多节点访问的存储卷时,确保卷模式与访问模式匹配
总结
存储配置问题在容器化环境中较为常见,特别是在使用高级存储功能时。Harvester项目通过持续改进提供了完善的存储解决方案,但用户仍需注意部署方式和配置细节。理解底层存储技术的工作原理,有助于快速定位和解决类似问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210